Question
upstudy study bank question image url

If \[ A=\left[\begin{array}{cc} 3 & 6 \\ 2 & -5 \end{array}\right], \] then \[ A^{-1}=\left[\begin{array}{cc|cc} \frac{5}{27} & & \frac{6}{27} & \\ \frac{2}{27} & \frac{1}{9} & \\ \hline \end{array}\right] \] Given \( \vec{b}=\left[\begin{array}{l}-3 \\ -4\end{array}\right] \), solve \( A \vec{x}=\vec{b} \). \[ \vec{x}=\left[\begin{array}{r} \sigma_{0} \end{array}\right] \]

Ask by Hills Barber. in the United States
Jan 23,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

\[ \vec{x} = \begin{bmatrix} -\dfrac{13}{9} \\ \dfrac{2}{9} \end{bmatrix} \]

Solution

To solve the linear system \( A \vec{x} = \vec{b} \) where \[ A = \begin{bmatrix} 3 & 6 \\ 2 & -5 \end{bmatrix}, \quad \vec{b} = \begin{bmatrix} -3 \\ -4 \end{bmatrix}, \] we can use the inverse of matrix \( A \) to find the solution vector \( \vec{x} \). ### Step 1: Compute the Inverse of \( A \) First, calculate the determinant of \( A \): \[ \text{det}(A) = (3)(-5) - (6)(2) = -15 - 12 = -27 \] The inverse of \( A \) is then: \[ A^{-1} = \frac{1}{\text{det}(A)} \begin{bmatrix} -5 & -6 \\ -2 & 3 \end{bmatrix} = \frac{1}{-27} \begin{bmatrix} -5 & -6 \\ -2 & 3 \end{bmatrix} = \begin{bmatrix} \frac{5}{27} & \frac{6}{27} \\ \frac{2}{27} & -\frac{1}{9} \end{bmatrix} \] ### Step 2: Multiply \( A^{-1} \) by \( \vec{b} \) Now, compute \( \vec{x} = A^{-1} \vec{b} \): \[ \vec{x} = \begin{bmatrix} \frac{5}{27} & \frac{6}{27} \\ \frac{2}{27} & -\frac{1}{9} \end{bmatrix} \begin{bmatrix} -3 \\ -4 \end{bmatrix} \] Calculate each component of \( \vec{x} \): \[ x_1 = \left(\frac{5}{27}\right)(-3) + \left(\frac{6}{27}\right)(-4) = -\frac{15}{27} - \frac{24}{27} = -\frac{39}{27} = -\frac{13}{9} \] \[ x_2 = \left(\frac{2}{27}\right)(-3) + \left(-\frac{1}{9}\right)(-4) = -\frac{6}{27} + \frac{4}{9} = -\frac{2}{9} + \frac{4}{9} = \frac{2}{9} \] ### Final Solution \[ \vec{x} = \begin{bmatrix} -\dfrac{13}{9} \\ \dfrac{2}{9} \end{bmatrix} \]

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

The Deep Dive

To solve the equation \( A \vec{x} = \vec{b} \), we can utilize the inverse of matrix \( A \). By multiplying both sides of the equation by \( A^{-1} \), we find \( \vec{x} = A^{-1} \vec{b} \). Using the provided inverse \( A^{-1} \) to calculate: \[ A^{-1} = \begin{bmatrix} \frac{5}{27} & \frac{6}{27} \\ \frac{2}{27} & \frac{1}{9} \end{bmatrix} \] and \[ \vec{b} = \begin{bmatrix} -3 \\ -4 \end{bmatrix}, \] we compute: \[ \vec{x} = A^{-1} \vec{b} = \begin{bmatrix} \frac{5}{27} & \frac{6}{27} \\ \frac{2}{27} & \frac{1}{9} \end{bmatrix} \begin{bmatrix} -3 \\ -4 \end{bmatrix}. \] Calculating each component of \( \vec{x} \): 1. For the first entry: \[ x_1 = \frac{5}{27}(-3) + \frac{6}{27}(-4) = \frac{-15}{27} + \frac{-24}{27} = \frac{-39}{27} = -\frac{13}{9}. \] 2. For the second entry: \[ x_2 = \frac{2}{27}(-3) + \frac{1}{9}(-4) = \frac{-6}{27} + \frac{-12}{27} = \frac{-18}{27} = -\frac{2}{3}. \] Putting it together, we find: \[ \vec{x} = \begin{bmatrix} -\frac{13}{9} \\ -\frac{2}{3} \end{bmatrix}. \] So, the solution to \( A \vec{x} = \vec{b} \) is: \[ \vec{x}=\left[\begin{array}{r} -\frac{13}{9} \\ -\frac{2}{3} \end{array}\right]. \]

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy