If \[ A=\left[\begin{array}{cc} 3 & 6 \\ 2 & -5 \end{array}\right], \] then \[ A^{-1}=\left[\begin{array}{cc|cc} \frac{5}{27} & & \frac{6}{27} & \\ \frac{2}{27} & \frac{1}{9} & \\ \hline \end{array}\right] \] Given \( \vec{b}=\left[\begin{array}{l}-3 \\ -4\end{array}\right] \), solve \( A \vec{x}=\vec{b} \). \[ \vec{x}=\left[\begin{array}{r} \sigma_{0} \end{array}\right] \]
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
The Deep Dive
To solve the equation \( A \vec{x} = \vec{b} \), we can utilize the inverse of matrix \( A \). By multiplying both sides of the equation by \( A^{-1} \), we find \( \vec{x} = A^{-1} \vec{b} \). Using the provided inverse \( A^{-1} \) to calculate: \[ A^{-1} = \begin{bmatrix} \frac{5}{27} & \frac{6}{27} \\ \frac{2}{27} & \frac{1}{9} \end{bmatrix} \] and \[ \vec{b} = \begin{bmatrix} -3 \\ -4 \end{bmatrix}, \] we compute: \[ \vec{x} = A^{-1} \vec{b} = \begin{bmatrix} \frac{5}{27} & \frac{6}{27} \\ \frac{2}{27} & \frac{1}{9} \end{bmatrix} \begin{bmatrix} -3 \\ -4 \end{bmatrix}. \] Calculating each component of \( \vec{x} \): 1. For the first entry: \[ x_1 = \frac{5}{27}(-3) + \frac{6}{27}(-4) = \frac{-15}{27} + \frac{-24}{27} = \frac{-39}{27} = -\frac{13}{9}. \] 2. For the second entry: \[ x_2 = \frac{2}{27}(-3) + \frac{1}{9}(-4) = \frac{-6}{27} + \frac{-12}{27} = \frac{-18}{27} = -\frac{2}{3}. \] Putting it together, we find: \[ \vec{x} = \begin{bmatrix} -\frac{13}{9} \\ -\frac{2}{3} \end{bmatrix}. \] So, the solution to \( A \vec{x} = \vec{b} \) is: \[ \vec{x}=\left[\begin{array}{r} -\frac{13}{9} \\ -\frac{2}{3} \end{array}\right]. \]