Question
upstudy study bank question image url

Determine \( f_{x} \) und \( f y \) of the given function \( f(x, y)=\left(x^{5} \ln 2 x\right) y^{8} \)

Ask by Salinas Grant. in South Sudan
Jan 23,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

The partial derivatives are: \[ f_x = y^{8} x^{4} \left(5 \ln(2x) + 1\right) \] \[ f_y = 8x^{5} \ln(2x) y^{7} \]

Solution

To find the partial derivatives \( f_x \) and \( f_y \) of the function \[ f(x, y) = \left(x^{5} \ln(2x)\right) y^{8}, \] we will differentiate with respect to \( x \) and \( y \) separately, treating the other variable as a constant in each case. ### Partial Derivative with Respect to \( x \) (\( f_x \)) \[ f(x, y) = x^{5} \ln(2x) \cdot y^{8} \] To differentiate \( f \) with respect to \( x \), treat \( y^8 \) as a constant: \[ f_x = y^{8} \cdot \frac{d}{dx}\left(x^{5} \ln(2x)\right) \] Use the **product rule** for differentiation, where if \( u = x^5 \) and \( v = \ln(2x) \), then: \[ \frac{d}{dx}(u \cdot v) = u' \cdot v + u \cdot v' \] Compute \( u' \) and \( v' \): \[ u' = \frac{d}{dx}(x^5) = 5x^4 \] \[ v' = \frac{d}{dx}(\ln(2x)) = \frac{1}{2x} \cdot 2 = \frac{1}{x} \] Applying the product rule: \[ \frac{d}{dx}\left(x^{5} \ln(2x)\right) = 5x^{4} \ln(2x) + x^{5} \cdot \frac{1}{x} = 5x^{4} \ln(2x) + x^{4} \] Factor out \( x^4 \): \[ f_x = y^{8} \left(5x^{4} \ln(2x) + x^{4}\right) = y^{8} x^{4} \left(5 \ln(2x) + 1\right) \] ### Partial Derivative with Respect to \( y \) (\( f_y \)) \[ f(x, y) = x^{5} \ln(2x) \cdot y^{8} \] To differentiate \( f \) with respect to \( y \), treat \( x^5 \ln(2x) \) as a constant: \[ f_y = x^{5} \ln(2x) \cdot \frac{d}{dx}(y^{8}) = x^{5} \ln(2x) \cdot 8y^{7} = 8x^{5} \ln(2x) y^{7} \] ### Summary The partial derivatives of \( f(x, y) = \left(x^{5} \ln(2x)\right) y^{8} \) are: \[ f_x = y^{8} x^{4} \left(5 \ln(2x) + 1\right) \] \[ f_y = 8x^{5} \ln(2x) y^{7} \]

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

The Deep Dive

Um die partiellen Ableitungen \( f_{x} \) und \( f_{y} \) der Funktion \( f(x, y) = \left(x^{5} \ln(2x)\right) y^{8} \) zu bestimmen, gehen wir folgendermaßen vor: Für \( f_{x} \) leiten wir die Funktion bezüglich \( x \) ab und behandeln \( y \) als eine Konstante. Die Ableitung wird mithilfe der Produktregel und der Kettenregel durchgeführt: \[ f_x = (5x^4 \ln(2x) + x^5 \cdot \frac{1}{x} \cdot 2) y^8 = \left(5x^4 \ln(2x) + 2x^4\right) y^8 = x^4(5 \ln(2x) + 2) y^8 \] Für \( f_{y} \) leiten wir die Funktion bezüglich \( y \) ab, wobei \( x \) konstant bleibt: \[ f_y = \left(x^{5} \ln(2x)\right) \cdot 8y^7 \] Zusammenfassend erhalten wir: \[ f_x = x^4(5 \ln(2x) + 2) y^8 \] \[ f_y = 8 \left(x^{5} \ln(2x)\right) y^7 \]

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy