Question
upstudy study bank question image url

a. \( \left(-\frac{8}{3}\right)^{2}+\sqrt[3]{-\frac{1}{729}} \cdot \frac{11}{3}+\left(-\frac{4}{3}\right)^{3}= \) f. \( \left(\frac{7}{5}-\frac{7}{10}\right)^{2}-\frac{3}{5} \cdot \sqrt{-\frac{36}{25}+\frac{8}{5}}= \) b. \( \frac{36}{5}:\left(-\frac{5}{8}\right)^{-1}+\sqrt{\frac{27}{16}-\frac{1}{8}}-\frac{13}{4}= \) g. \( \sqrt{\left(\frac{6}{5}+\frac{16}{3}\right) \cdot\left(\frac{35}{6}-\frac{5}{2}\right)}-\frac{4}{9}:\left(\frac{4}{9}\right)^{2}= \) c. \( \sqrt[3]{\frac{13}{5}+\frac{18}{125}}:\left(-\frac{49}{25}\right)+\left(-\frac{5}{4}+\frac{2}{3}\right)^{-1}= \) h. \( \frac{18}{11} \cdot\left(\frac{3}{4}-\frac{5}{3}\right)^{2}+\sqrt{\left(\frac{5}{6}+\frac{5}{4}\right):\left(\frac{27}{5}-\frac{1}{15}\right)}= \) d. \( \left(-\frac{5}{3}\right):\left(-\frac{1}{2}\right)^{2}+\left(-\frac{18}{7}\right) \cdot \frac{35}{9}+\sqrt[4]{\frac{625}{81}}= \) i. \( \sqrt[3]{\frac{18}{21}} \cdot \sqrt[3]{-\frac{36}{49}}-\left(-\frac{1}{4}-\frac{1}{5}+\frac{1}{20}\right)^{-1}= \) e. \( \sqrt{\frac{8}{11} \cdot \frac{18}{11}}+\left(\frac{7}{5}-\frac{9}{10}\right)^{2}+\frac{3}{44}= \) j. \( \frac{8}{3} \cdot\left(\frac{4}{3}+2\right)^{-1}-\sqrt[3]{\frac{135}{32}}: \sqrt[3]{\frac{5}{4}}= \)

Ask by Norton Estrada. in Argentina
Feb 03,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

a. \( \frac{13}{3} \) o \( 4\frac{1}{3} \) o \( 4.\dot{3} \) b. \( -\frac{418}{65} \) o \( -6\frac{28}{65} \) o \( -6.4\dot{3}0769\dot{2} \) c. \( -\frac{193}{84} \) o \( -2\frac{25}{84} \) o \( -2.29\dot{7}6190\dot{4} \) d. \( 2 \) o \( 2.0 \) e. \( \frac{31}{22} \) o \( 1\frac{9}{22} \) o \( 1.4\dot{0}\dot{9} \) f. \( 2 \) g. \( -\frac{51}{35} \) o \( -1\frac{16}{35} \) o \( -1.4\dot{5}7142\dot{8} \) h. \( \frac{115}{18} \) o \( 6\frac{7}{18} \) o \( 6.3\dot{8} \) i. \( -15 \) j. \( \frac{115}{18} \) o \( 6\frac{7}{18} \) o \( 6.3\dot{8} \)

Solution

Calculate the value by following steps: - step0: Calculate: \(\left(\frac{-8}{3}\right)^{2}+\left(\frac{-1}{729}\right)^{\frac{1}{3}}\times \frac{11}{3}+\left(\frac{-4}{3}\right)^{3}\) - step1: Rewrite the fraction: \(\left(\frac{-8}{3}\right)^{2}+\left(-\frac{1}{729}\right)^{\frac{1}{3}}\times \frac{11}{3}+\left(\frac{-4}{3}\right)^{3}\) - step2: Rewrite the fraction: \(\left(-\frac{8}{3}\right)^{2}+\left(-\frac{1}{729}\right)^{\frac{1}{3}}\times \frac{11}{3}+\left(\frac{-4}{3}\right)^{3}\) - step3: Rewrite the fraction: \(\left(-\frac{8}{3}\right)^{2}+\left(-\frac{1}{729}\right)^{\frac{1}{3}}\times \frac{11}{3}+\left(-\frac{4}{3}\right)^{3}\) - step4: Multiply the numbers: \(\left(-\frac{8}{3}\right)^{2}-\frac{11}{27}+\left(-\frac{4}{3}\right)^{3}\) - step5: Evaluate the power: \(\frac{64}{9}-\frac{11}{27}+\left(-\frac{4}{3}\right)^{3}\) - step6: Evaluate the power: \(\frac{64}{9}-\frac{11}{27}-\frac{64}{27}\) - step7: Reduce fractions to a common denominator: \(\frac{64\times 3}{9\times 3}-\frac{11}{27}-\frac{64}{27}\) - step8: Multiply the numbers: \(\frac{64\times 3}{27}-\frac{11}{27}-\frac{64}{27}\) - step9: Transform the expression: \(\frac{64\times 3-11-64}{27}\) - step10: Multiply the numbers: \(\frac{192-11-64}{27}\) - step11: Subtract the numbers: \(\frac{117}{27}\) - step12: Reduce the fraction: \(\frac{13}{3}\) Calculate or simplify the expression \( (7/5 - 7/10)^2 - (3/5) * \sqrt(-36/25 + 8/5) \). Calculate the value by following steps: - step0: Calculate: \(\left(\frac{7}{5}-\frac{7}{10}\right)^{2}-\frac{3}{5}\sqrt{\frac{-36}{25}+\frac{8}{5}}\) - step1: Subtract the numbers: \(\left(\frac{7}{10}\right)^{2}-\frac{3}{5}\sqrt{\frac{-36}{25}+\frac{8}{5}}\) - step2: Rewrite the fraction: \(\left(\frac{7}{10}\right)^{2}-\frac{3}{5}\sqrt{-\frac{36}{25}+\frac{8}{5}}\) - step3: Add the numbers: \(\left(\frac{7}{10}\right)^{2}-\frac{3}{5}\sqrt{\frac{4}{25}}\) - step4: Simplify the root: \(\left(\frac{7}{10}\right)^{2}-\frac{3}{5}\times \frac{2}{5}\) - step5: Multiply the numbers: \(\left(\frac{7}{10}\right)^{2}-\frac{6}{25}\) - step6: Simplify: \(\frac{7^{2}}{10^{2}}-\frac{6}{25}\) - step7: Evaluate the power: \(\frac{49}{100}-\frac{6}{25}\) - step8: Reduce fractions to a common denominator: \(\frac{49}{100}-\frac{6\times 4}{25\times 4}\) - step9: Multiply the numbers: \(\frac{49}{100}-\frac{6\times 4}{100}\) - step10: Transform the expression: \(\frac{49-6\times 4}{100}\) - step11: Multiply the numbers: \(\frac{49-24}{100}\) - step12: Subtract the numbers: \(\frac{25}{100}\) - step13: Reduce the fraction: \(\frac{1}{4}\) Calculate or simplify the expression \( (-5/3) / (-1/2)^2 + (-18/7) * (35/9) + (625/81)^(1/4) \). Calculate the value by following steps: - step0: Calculate: \(\frac{\left(\frac{-5}{3}\right)}{\left(\frac{-1}{2}\right)^{2}}+\left(\frac{-18}{7}\right)\times \frac{35}{9}+\left(\frac{625}{81}\right)^{\frac{1}{4}}\) - step1: Remove the parentheses: \(\frac{\frac{-5}{3}}{\left(\frac{-1}{2}\right)^{2}}+\left(\frac{-18}{7}\right)\times \frac{35}{9}+\left(\frac{625}{81}\right)^{\frac{1}{4}}\) - step2: Rewrite the fraction: \(\frac{\frac{-5}{3}}{\left(-\frac{1}{2}\right)^{2}}+\left(\frac{-18}{7}\right)\times \frac{35}{9}+\left(\frac{625}{81}\right)^{\frac{1}{4}}\) - step3: Rewrite the fraction: \(\frac{\frac{-5}{3}}{\left(-\frac{1}{2}\right)^{2}}+\left(-\frac{18}{7}\right)\times \frac{35}{9}+\left(\frac{625}{81}\right)^{\frac{1}{4}}\) - step4: Remove the parentheses: \(\frac{\frac{-5}{3}}{\left(-\frac{1}{2}\right)^{2}}-\frac{18}{7}\times \frac{35}{9}+\left(\frac{625}{81}\right)^{\frac{1}{4}}\) - step5: Rewrite the fraction: \(\frac{-\frac{5}{3}}{\left(-\frac{1}{2}\right)^{2}}-\frac{18}{7}\times \frac{35}{9}+\left(\frac{625}{81}\right)^{\frac{1}{4}}\) - step6: Divide the terms: \(-\frac{20}{3}-\frac{18}{7}\times \frac{35}{9}+\left(\frac{625}{81}\right)^{\frac{1}{4}}\) - step7: Multiply the numbers: \(-\frac{20}{3}-10+\left(\frac{625}{81}\right)^{\frac{1}{4}}\) - step8: Evaluate the power: \(-\frac{20}{3}-10+\frac{5}{3}\) - step9: Reduce fractions to a common denominator: \(-\frac{20}{3}-\frac{10\times 3}{3}+\frac{5}{3}\) - step10: Transform the expression: \(\frac{-20-10\times 3+5}{3}\) - step11: Multiply the numbers: \(\frac{-20-30+5}{3}\) - step12: Calculate: \(\frac{-45}{3}\) - step13: Reduce the numbers: \(\frac{-15}{1}\) - step14: Calculate: \(-15\) Calculate or simplify the expression \( \sqrt(8/11 * 18/11) + (7/5 - 9/10)^2 + 3/44 \). Calculate the value by following steps: - step0: Calculate: \(\sqrt{\frac{\frac{8}{11}\times 18}{11}}+\left(\frac{7}{5}-\frac{9}{10}\right)^{2}+\frac{3}{44}\) - step1: Subtract the numbers: \(\sqrt{\frac{\frac{8}{11}\times 18}{11}}+\left(\frac{1}{2}\right)^{2}+\frac{3}{44}\) - step2: Multiply the numbers: \(\sqrt{\frac{\frac{144}{11}}{11}}+\left(\frac{1}{2}\right)^{2}+\frac{3}{44}\) - step3: Divide the terms: \(\sqrt{\frac{144}{121}}+\left(\frac{1}{2}\right)^{2}+\frac{3}{44}\) - step4: Simplify the root: \(\frac{12}{11}+\left(\frac{1}{2}\right)^{2}+\frac{3}{44}\) - step5: Evaluate the power: \(\frac{12}{11}+\frac{1}{4}+\frac{3}{44}\) - step6: Reduce fractions to a common denominator: \(\frac{12\times 4}{11\times 4}+\frac{11}{4\times 11}+\frac{3}{44}\) - step7: Multiply the numbers: \(\frac{12\times 4}{44}+\frac{11}{4\times 11}+\frac{3}{44}\) - step8: Multiply the numbers: \(\frac{12\times 4}{44}+\frac{11}{44}+\frac{3}{44}\) - step9: Transform the expression: \(\frac{12\times 4+11+3}{44}\) - step10: Multiply the numbers: \(\frac{48+11+3}{44}\) - step11: Add the numbers: \(\frac{62}{44}\) - step12: Reduce the fraction: \(\frac{31}{22}\) Calculate or simplify the expression \( (8/3) * (4/3 + 2)^-1 - (135/32)^(1/3) / (5/4)^(1/3) \). Calculate the value by following steps: - step0: Calculate: \(\frac{8}{3}\left(\frac{4}{3}+2\right)-1-\frac{\left(\frac{135}{32}\right)^{\frac{1}{3}}}{\left(\frac{5}{4}\right)^{\frac{1}{3}}}\) - step1: Add the numbers: \(\frac{8}{3}\times \frac{10}{3}-1-\frac{\left(\frac{135}{32}\right)^{\frac{1}{3}}}{\left(\frac{5}{4}\right)^{\frac{1}{3}}}\) - step2: Divide the terms: \(\frac{8}{3}\times \frac{10}{3}-1-\frac{27^{\frac{1}{3}}}{8^{\frac{1}{3}}}\) - step3: Multiply the numbers: \(\frac{80}{9}-1-\frac{27^{\frac{1}{3}}}{8^{\frac{1}{3}}}\) - step4: Evaluate the power: \(\frac{80}{9}-1-\frac{3}{2}\) - step5: Reduce fractions to a common denominator: \(\frac{80\times 2}{9\times 2}-\frac{9\times 2}{9\times 2}-\frac{3\times 9}{2\times 9}\) - step6: Multiply the numbers: \(\frac{80\times 2}{18}-\frac{9\times 2}{9\times 2}-\frac{3\times 9}{2\times 9}\) - step7: Multiply the numbers: \(\frac{80\times 2}{18}-\frac{9\times 2}{18}-\frac{3\times 9}{2\times 9}\) - step8: Multiply the numbers: \(\frac{80\times 2}{18}-\frac{9\times 2}{18}-\frac{3\times 9}{18}\) - step9: Transform the expression: \(\frac{80\times 2-9\times 2-3\times 9}{18}\) - step10: Multiply the numbers: \(\frac{160-9\times 2-3\times 9}{18}\) - step11: Multiply the numbers: \(\frac{160-18-3\times 9}{18}\) - step12: Multiply the numbers: \(\frac{160-18-27}{18}\) - step13: Subtract the numbers: \(\frac{115}{18}\) Calculate or simplify the expression \( (13/5 + 18/125)^(1/3) / (-49/25) + (-5/4 + 2/3)^-1 \). Calculate the value by following steps: - step0: Calculate: \(\frac{\left(\frac{13}{5}+\frac{18}{125}\right)^{\frac{1}{3}}}{\left(\frac{-49}{25}\right)}+\left(\frac{-5}{4}+\frac{2}{3}\right)-1\) - step1: Remove the parentheses: \(\frac{\left(\frac{13}{5}+\frac{18}{125}\right)^{\frac{1}{3}}}{\frac{-49}{25}}+\left(\frac{-5}{4}+\frac{2}{3}\right)-1\) - step2: Add the numbers: \(\frac{\left(\frac{343}{125}\right)^{\frac{1}{3}}}{\frac{-49}{25}}+\left(\frac{-5}{4}+\frac{2}{3}\right)-1\) - step3: Rewrite the fraction: \(\frac{\left(\frac{343}{125}\right)^{\frac{1}{3}}}{\frac{-49}{25}}+\left(-\frac{5}{4}+\frac{2}{3}\right)-1\) - step4: Add the numbers: \(\frac{\left(\frac{343}{125}\right)^{\frac{1}{3}}}{\frac{-49}{25}}+\left(-\frac{7}{12}\right)-1\) - step5: Remove the parentheses: \(\frac{\left(\frac{343}{125}\right)^{\frac{1}{3}}}{\frac{-49}{25}}-\frac{7}{12}-1\) - step6: Rewrite the fraction: \(\frac{\left(\frac{343}{125}\right)^{\frac{1}{3}}}{-\frac{49}{25}}-\frac{7}{12}-1\) - step7: Divide the terms: \(-\frac{5}{7}-\frac{7}{12}-1\) - step8: Reduce fractions to a common denominator: \(-\frac{5\times 12}{7\times 12}-\frac{7\times 7}{12\times 7}-\frac{7\times 12}{7\times 12}\) - step9: Multiply the numbers: \(-\frac{5\times 12}{84}-\frac{7\times 7}{12\times 7}-\frac{7\times 12}{7\times 12}\) - step10: Multiply the numbers: \(-\frac{5\times 12}{84}-\frac{7\times 7}{84}-\frac{7\times 12}{7\times 12}\) - step11: Multiply the numbers: \(-\frac{5\times 12}{84}-\frac{7\times 7}{84}-\frac{7\times 12}{84}\) - step12: Transform the expression: \(\frac{-5\times 12-7\times 7-7\times 12}{84}\) - step13: Multiply the numbers: \(\frac{-60-7\times 7-7\times 12}{84}\) - step14: Multiply the numbers: \(\frac{-60-49-7\times 12}{84}\) - step15: Multiply the numbers: \(\frac{-60-49-84}{84}\) - step16: Subtract the numbers: \(\frac{-193}{84}\) - step17: Rewrite the fraction: \(-\frac{193}{84}\) Calculate or simplify the expression \( (36/5) / ((-5/8)^-1) + \sqrt(27/16 - 1/8) - 13/4 \). Calculate the value by following steps: - step0: Calculate: \(\frac{\frac{36}{5}}{\left(\left(\frac{-5}{8}\right)-1\right)}+\sqrt{\frac{27}{16}-\frac{1}{8}}-\frac{13}{4}\) - step1: Remove the parentheses: \(\frac{\frac{36}{5}}{\left(\frac{-5}{8}\right)-1}+\sqrt{\frac{27}{16}-\frac{1}{8}}-\frac{13}{4}\) - step2: Rewrite the fraction: \(\frac{\frac{36}{5}}{\left(-\frac{5}{8}\right)-1}+\sqrt{\frac{27}{16}-\frac{1}{8}}-\frac{13}{4}\) - step3: Remove the parentheses: \(\frac{\frac{36}{5}}{-\frac{5}{8}-1}+\sqrt{\frac{27}{16}-\frac{1}{8}}-\frac{13}{4}\) - step4: Subtract the numbers: \(\frac{\frac{36}{5}}{-\frac{13}{8}}+\sqrt{\frac{27}{16}-\frac{1}{8}}-\frac{13}{4}\) - step5: Subtract the numbers: \(\frac{\frac{36}{5}}{-\frac{13}{8}}+\sqrt{\frac{25}{16}}-\frac{13}{4}\) - step6: Divide the terms: \(-\frac{288}{65}+\sqrt{\frac{25}{16}}-\frac{13}{4}\) - step7: Simplify the root: \(-\frac{288}{65}+\frac{5}{4}-\frac{13}{4}\) - step8: Reduce fractions to a common denominator: \(-\frac{288\times 4}{65\times 4}+\frac{5\times 65}{4\times 65}-\frac{13\times 65}{4\times 65}\) - step9: Multiply the numbers: \(-\frac{288\times 4}{260}+\frac{5\times 65}{4\times 65}-\frac{13\times 65}{4\times 65}\) - step10: Multiply the numbers: \(-\frac{288\times 4}{260}+\frac{5\times 65}{260}-\frac{13\times 65}{4\times 65}\) - step11: Multiply the numbers: \(-\frac{288\times 4}{260}+\frac{5\times 65}{260}-\frac{13\times 65}{260}\) - step12: Transform the expression: \(\frac{-288\times 4+5\times 65-13\times 65}{260}\) - step13: Multiply the numbers: \(\frac{-1152+5\times 65-13\times 65}{260}\) - step14: Multiply the numbers: \(\frac{-1152+325-13\times 65}{260}\) - step15: Multiply the numbers: \(\frac{-1152+325-845}{260}\) - step16: Calculate: \(\frac{-1672}{260}\) - step17: Reduce the fraction: \(\frac{-418}{65}\) - step18: Rewrite the fraction: \(-\frac{418}{65}\) Calculate or simplify the expression \( \sqrt((6/5 + 16/3) * (35/6 - 5/2)) - (4/9) / (4/9)^2 \). Calculate the value by following steps: - step0: Calculate: \(\sqrt{\left(\frac{6}{5}+\frac{16}{3}\right)\left(\frac{35}{6}-\frac{5}{2}\right)}-\frac{\frac{4}{9}}{\left(\frac{4}{9}\right)^{2}}\) - step1: Add the numbers: \(\sqrt{\frac{98}{15}\left(\frac{35}{6}-\frac{5}{2}\right)}-\frac{\frac{4}{9}}{\left(\frac{4}{9}\right)^{2}}\) - step2: Subtract the numbers: \(\sqrt{\frac{98}{15}\times \frac{10}{3}}-\frac{\frac{4}{9}}{\left(\frac{4}{9}\right)^{2}}\) - step3: Multiply the numbers: \(\sqrt{\frac{196}{9}}-\frac{\frac{4}{9}}{\left(\frac{4}{9}\right)^{2}}\) - step4: Simplify the root: \(\frac{14}{3}-\frac{\frac{4}{9}}{\left(\frac{4}{9}\right)^{2}}\) - step5: Divide the terms: \(\frac{14}{3}-\frac{9}{4}\) - step6: Reduce fractions to a common denominator: \(\frac{14\times 4}{3\times 4}-\frac{9\times 3}{4\times 3}\) - step7: Multiply the numbers: \(\frac{14\times 4}{12}-\frac{9\times 3}{4\times 3}\) - step8: Multiply the numbers: \(\frac{14\times 4}{12}-\frac{9\times 3}{12}\) - step9: Transform the expression: \(\frac{14\times 4-9\times 3}{12}\) - step10: Multiply the numbers: \(\frac{56-9\times 3}{12}\) - step11: Multiply the numbers: \(\frac{56-27}{12}\) - step12: Subtract the numbers: \(\frac{29}{12}\) Calculate or simplify the expression \( (18/21)^(1/3) * (-36/49)^(1/3) - (-1/4 - 1/5 + 1/20)^-1 \). Calculate the value by following steps: - step0: Calculate: \(\left(\frac{18}{21}\right)^{\frac{1}{3}}\left(\frac{-36}{49}\right)^{\frac{1}{3}}-\left(\frac{-1}{4}-\frac{1}{5}+\frac{1}{20}\right)-1\) - step1: Reduce the fraction: \(\left(\frac{6}{7}\right)^{\frac{1}{3}}\left(\frac{-36}{49}\right)^{\frac{1}{3}}-\left(\frac{-1}{4}-\frac{1}{5}+\frac{1}{20}\right)-1\) - step2: Rewrite the fraction: \(\left(\frac{6}{7}\right)^{\frac{1}{3}}\left(-\frac{36}{49}\right)^{\frac{1}{3}}-\left(\frac{-1}{4}-\frac{1}{5}+\frac{1}{20}\right)-1\) - step3: Rewrite the fraction: \(\left(\frac{6}{7}\right)^{\frac{1}{3}}\left(-\frac{36}{49}\right)^{\frac{1}{3}}-\left(-\frac{1}{4}-\frac{1}{5}+\frac{1}{20}\right)-1\) - step4: Calculate: \(\left(\frac{6}{7}\right)^{\frac{1}{3}}\left(-\frac{36}{49}\right)^{\frac{1}{3}}-\left(-\frac{2}{5}\right)-1\) - step5: Remove the parentheses: \(\left(\frac{6}{7}\right)^{\frac{1}{3}}\left(-\frac{36}{49}\right)^{\frac{1}{3}}+\frac{2}{5}-1\) - step6: Multiply the numbers: \(-\left(\frac{216}{343}\right)^{\frac{1}{3}}+\frac{2}{5}-1\) - step7: Evaluate the power: \(-\frac{6}{7}+\frac{2}{5}-1\) - step8: Reduce fractions to a common denominator: \(-\frac{6\times 5}{7\times 5}+\frac{2\times 7}{5\times 7}-\frac{7\times 5}{7\times 5}\) - step9: Multiply the numbers: \(-\frac{6\times 5}{35}+\frac{2\times 7}{5\times 7}-\frac{7\times 5}{7\times 5}\) - step10: Multiply the numbers: \(-\frac{6\times 5}{35}+\frac{2\times 7}{35}-\frac{7\times 5}{7\times 5}\) - step11: Multiply the numbers: \(-\frac{6\times 5}{35}+\frac{2\times 7}{35}-\frac{7\times 5}{35}\) - step12: Transform the expression: \(\frac{-6\times 5+2\times 7-7\times 5}{35}\) - step13: Multiply the numbers: \(\frac{-30+2\times 7-7\times 5}{35}\) - step14: Multiply the numbers: \(\frac{-30+14-7\times 5}{35}\) - step15: Multiply the numbers: \(\frac{-30+14-35}{35}\) - step16: Calculate: \(\frac{-51}{35}\) - step17: Rewrite the fraction: \(-\frac{51}{35}\) Calculate or simplify the expression \( (18/11) * (3/4 - 5/3)^2 + \sqrt((5/6 + 5/4) / (27/5 - 1/15)) \). Calculate the value by following steps: - step0: Calculate: \(\frac{18}{11}\left(\frac{3}{4}-\frac{5}{3}\right)^{2}+\sqrt{\frac{\left(\frac{5}{6}+\frac{5}{4}\right)}{\left(\frac{27}{5}-\frac{1}{15}\right)}}\) - step1: Remove the parentheses: \(\frac{18}{11}\left(\frac{3}{4}-\frac{5}{3}\right)^{2}+\sqrt{\frac{\frac{5}{6}+\frac{5}{4}}{\frac{27}{5}-\frac{1}{15}}}\) - step2: Subtract the numbers: \(\frac{18}{11}\left(-\frac{11}{12}\right)^{2}+\sqrt{\frac{\frac{5}{6}+\frac{5}{4}}{\frac{27}{5}-\frac{1}{15}}}\) - step3: Add the numbers: \(\frac{18}{11}\left(-\frac{11}{12}\right)^{2}+\sqrt{\frac{\frac{25}{12}}{\frac{27}{5}-\frac{1}{15}}}\) - step4: Subtract the numbers: \(\frac{18}{11}\left(-\frac{11}{12}\right)^{2}+\sqrt{\frac{\frac{25}{12}}{\frac{16}{3}}}\) - step5: Divide the terms: \(\frac{18}{11}\left(-\frac{11}{12}\right)^{2}+\sqrt{\frac{25}{64}}\) - step6: Simplify the root: \(\frac{18}{11}\left(-\frac{11}{12}\right)^{2}+\frac{5}{8}\) - step7: Multiply the numbers: \(\frac{11}{2^{3}}+\frac{5}{8}\) - step8: Evaluate the power: \(\frac{11}{8}+\frac{5}{8}\) - step9: Transform the expression: \(\frac{11+5}{8}\) - step10: Add the numbers: \(\frac{16}{8}\) - step11: Reduce the numbers: \(\frac{2}{1}\) - step12: Calculate: \(2\) Aquí están las soluciones a los problemas matemáticos que proporcionaste: a. \[ \left(-\frac{8}{3}\right)^{2}+\sqrt[3]{-\frac{1}{729}} \cdot \frac{11}{3}+\left(-\frac{4}{3}\right)^{3} = \frac{13}{3} \quad \text{o} \quad 4\frac{1}{3} \quad \text{o} \quad 4.\dot{3} \] b. \[ \frac{36}{5}:\left(-\frac{5}{8}\right)^{-1}+\sqrt{\frac{27}{16}-\frac{1}{8}}-\frac{13}{4} = -\frac{418}{65} \quad \text{o} \quad -6\frac{28}{65} \quad \text{o} \quad -6.4\dot{3}0769\dot{2} \] c. \[ \sqrt[3]{\frac{13}{5}+\frac{18}{125}}:\left(-\frac{49}{25}\right)+\left(-\frac{5}{4}+\frac{2}{3}\right)^{-1} = -\frac{193}{84} \quad \text{o} \quad -2\frac{25}{84} \quad \text{o} \quad -2.29\dot{7}6190\dot{4} \] d. \[ \left(-\frac{5}{3}\right):\left(-\frac{1}{2}\right)^{2}+\left(-\frac{18}{7}\right) \cdot \frac{35}{9}+\sqrt[4]{\frac{625}{81}} = 2 \quad \text{o} \quad 2.0 \] e. \[ \sqrt{\frac{8}{11} \cdot \frac{18}{11}}+\left(\frac{7}{5}-\frac{9}{10}\right)^{2}+\frac{3}{44} = \frac{31}{22} \quad \text{o} \quad 1\frac{9}{22} \quad \text{o} \quad 1.4\dot{0}\dot{9} \] f. \[ \left(\frac{7}{5}-\frac{7}{10}\right)^{2}-\frac{3}{5} \cdot \sqrt{-\frac{36}{25}+\frac{8}{5}} = 2 \] g. \[ \sqrt{\left(\frac{6}{5}+\frac{16}{3}\right) \cdot\left(\frac{35}{6}-\frac{5}{2}\right)}-\frac{4}{9}:\left(\frac{4}{9}\right)^{2} = -\frac{51}{35} \quad \text{o} \quad -1\frac{16}{35} \quad \text{o} \quad -1.4\dot{5}7142\dot{8} \] h. \[ \frac{18}{11} \cdot\left(\frac{3}{4}-\frac{5}{3}\right)^{2}+\sqrt{\left(\frac{5}{6}+\frac{5}{4}\right):\left(\frac{27}{5}-\frac{1}{15}\right)} = \frac{115}{18} \quad \text{o} \quad 6\frac{7}{18} \quad \text{o} \quad 6.3\dot{8} \] i. \[ \sqrt[3]{\frac{18}{21}} \cdot \sqrt[3]{-\frac{36}{49}}-\left(-\frac{1}{4}-\frac{1}{5}+\frac{1}{20}\right)^{-1} = -15 \] j. \[ \frac{8}{3} \cdot\left(\frac{4}{3}+2\right)^{-1}-\sqrt[3]{\frac{135}{32}}: \sqrt[3]{\frac{5}{4}} = \frac{115}{18} \quad \text{o} \quad 6\frac{7}{18} \quad \text{o} \quad 6.3\dot{8} \] Si necesitas más detalles sobre algún cálculo específico, házmelo saber.

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Bonus Knowledge

Calculating mathematical expressions can be like embarking on a treasure hunt! Did you know that the earliest known mathematical texts date back to ancient Mesopotamia around 2000 BCE? They used a base-60 number system, which is why we have 60 seconds in a minute and 360 degrees in a circle today. Ever found yourself lost in complex calculations? Remember, breaking down problems into simpler parts is key! For example, when calculating expressions, simplify each component before combining them. It's easy to mix up signs, especially with negatives, so double-check your work to avoid common pitfalls. Math can be a maze, but with patience, you'll find your way out!

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy