Pregunta
upstudy study bank question image url

a. \( \left(-\frac{8}{3}\right)^{2}+\sqrt[3]{-\frac{1}{729}} \cdot \frac{11}{3}+\left(-\frac{4}{3}\right)^{3}= \) f. \( \left(\frac{7}{5}-\frac{7}{10}\right)^{2}-\frac{3}{5} \cdot \sqrt{-\frac{36}{25}+\frac{8}{5}}= \) b. \( \frac{36}{5}:\left(-\frac{5}{8}\right)^{-1}+\sqrt{\frac{27}{16}-\frac{1}{8}}-\frac{13}{4}= \) g. \( \sqrt{\left(\frac{6}{5}+\frac{16}{3}\right) \cdot\left(\frac{35}{6}-\frac{5}{2}\right)}-\frac{4}{9}:\left(\frac{4}{9}\right)^{2}= \) c. \( \sqrt[3]{\frac{13}{5}+\frac{18}{125}}:\left(-\frac{49}{25}\right)+\left(-\frac{5}{4}+\frac{2}{3}\right)^{-1}= \) h. \( \frac{18}{11} \cdot\left(\frac{3}{4}-\frac{5}{3}\right)^{2}+\sqrt{\left(\frac{5}{6}+\frac{5}{4}\right):\left(\frac{27}{5}-\frac{1}{15}\right)}= \) d. \( \left(-\frac{5}{3}\right):\left(-\frac{1}{2}\right)^{2}+\left(-\frac{18}{7}\right) \cdot \frac{35}{9}+\sqrt[4]{\frac{625}{81}}= \) i. \( \sqrt[3]{\frac{18}{21}} \cdot \sqrt[3]{-\frac{36}{49}}-\left(-\frac{1}{4}-\frac{1}{5}+\frac{1}{20}\right)^{-1}= \) e. \( \sqrt{\frac{8}{11} \cdot \frac{18}{11}}+\left(\frac{7}{5}-\frac{9}{10}\right)^{2}+\frac{3}{44}= \) j. \( \frac{8}{3} \cdot\left(\frac{4}{3}+2\right)^{-1}-\sqrt[3]{\frac{135}{32}}: \sqrt[3]{\frac{5}{4}}= \)

Ask by Norton Estrada. in Argentina
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

a. \( \frac{13}{3} \) o \( 4\frac{1}{3} \) o \( 4.\dot{3} \) b. \( -\frac{418}{65} \) o \( -6\frac{28}{65} \) o \( -6.4\dot{3}0769\dot{2} \) c. \( -\frac{193}{84} \) o \( -2\frac{25}{84} \) o \( -2.29\dot{7}6190\dot{4} \) d. \( 2 \) o \( 2.0 \) e. \( \frac{31}{22} \) o \( 1\frac{9}{22} \) o \( 1.4\dot{0}\dot{9} \) f. \( 2 \) g. \( -\frac{51}{35} \) o \( -1\frac{16}{35} \) o \( -1.4\dot{5}7142\dot{8} \) h. \( \frac{115}{18} \) o \( 6\frac{7}{18} \) o \( 6.3\dot{8} \) i. \( -15 \) j. \( \frac{115}{18} \) o \( 6\frac{7}{18} \) o \( 6.3\dot{8} \)

Solución

Calculate the value by following steps: - step0: Calculate: \(\left(\frac{-8}{3}\right)^{2}+\left(\frac{-1}{729}\right)^{\frac{1}{3}}\times \frac{11}{3}+\left(\frac{-4}{3}\right)^{3}\) - step1: Rewrite the fraction: \(\left(\frac{-8}{3}\right)^{2}+\left(-\frac{1}{729}\right)^{\frac{1}{3}}\times \frac{11}{3}+\left(\frac{-4}{3}\right)^{3}\) - step2: Rewrite the fraction: \(\left(-\frac{8}{3}\right)^{2}+\left(-\frac{1}{729}\right)^{\frac{1}{3}}\times \frac{11}{3}+\left(\frac{-4}{3}\right)^{3}\) - step3: Rewrite the fraction: \(\left(-\frac{8}{3}\right)^{2}+\left(-\frac{1}{729}\right)^{\frac{1}{3}}\times \frac{11}{3}+\left(-\frac{4}{3}\right)^{3}\) - step4: Multiply the numbers: \(\left(-\frac{8}{3}\right)^{2}-\frac{11}{27}+\left(-\frac{4}{3}\right)^{3}\) - step5: Evaluate the power: \(\frac{64}{9}-\frac{11}{27}+\left(-\frac{4}{3}\right)^{3}\) - step6: Evaluate the power: \(\frac{64}{9}-\frac{11}{27}-\frac{64}{27}\) - step7: Reduce fractions to a common denominator: \(\frac{64\times 3}{9\times 3}-\frac{11}{27}-\frac{64}{27}\) - step8: Multiply the numbers: \(\frac{64\times 3}{27}-\frac{11}{27}-\frac{64}{27}\) - step9: Transform the expression: \(\frac{64\times 3-11-64}{27}\) - step10: Multiply the numbers: \(\frac{192-11-64}{27}\) - step11: Subtract the numbers: \(\frac{117}{27}\) - step12: Reduce the fraction: \(\frac{13}{3}\) Calculate or simplify the expression \( (7/5 - 7/10)^2 - (3/5) * \sqrt(-36/25 + 8/5) \). Calculate the value by following steps: - step0: Calculate: \(\left(\frac{7}{5}-\frac{7}{10}\right)^{2}-\frac{3}{5}\sqrt{\frac{-36}{25}+\frac{8}{5}}\) - step1: Subtract the numbers: \(\left(\frac{7}{10}\right)^{2}-\frac{3}{5}\sqrt{\frac{-36}{25}+\frac{8}{5}}\) - step2: Rewrite the fraction: \(\left(\frac{7}{10}\right)^{2}-\frac{3}{5}\sqrt{-\frac{36}{25}+\frac{8}{5}}\) - step3: Add the numbers: \(\left(\frac{7}{10}\right)^{2}-\frac{3}{5}\sqrt{\frac{4}{25}}\) - step4: Simplify the root: \(\left(\frac{7}{10}\right)^{2}-\frac{3}{5}\times \frac{2}{5}\) - step5: Multiply the numbers: \(\left(\frac{7}{10}\right)^{2}-\frac{6}{25}\) - step6: Simplify: \(\frac{7^{2}}{10^{2}}-\frac{6}{25}\) - step7: Evaluate the power: \(\frac{49}{100}-\frac{6}{25}\) - step8: Reduce fractions to a common denominator: \(\frac{49}{100}-\frac{6\times 4}{25\times 4}\) - step9: Multiply the numbers: \(\frac{49}{100}-\frac{6\times 4}{100}\) - step10: Transform the expression: \(\frac{49-6\times 4}{100}\) - step11: Multiply the numbers: \(\frac{49-24}{100}\) - step12: Subtract the numbers: \(\frac{25}{100}\) - step13: Reduce the fraction: \(\frac{1}{4}\) Calculate or simplify the expression \( (-5/3) / (-1/2)^2 + (-18/7) * (35/9) + (625/81)^(1/4) \). Calculate the value by following steps: - step0: Calculate: \(\frac{\left(\frac{-5}{3}\right)}{\left(\frac{-1}{2}\right)^{2}}+\left(\frac{-18}{7}\right)\times \frac{35}{9}+\left(\frac{625}{81}\right)^{\frac{1}{4}}\) - step1: Remove the parentheses: \(\frac{\frac{-5}{3}}{\left(\frac{-1}{2}\right)^{2}}+\left(\frac{-18}{7}\right)\times \frac{35}{9}+\left(\frac{625}{81}\right)^{\frac{1}{4}}\) - step2: Rewrite the fraction: \(\frac{\frac{-5}{3}}{\left(-\frac{1}{2}\right)^{2}}+\left(\frac{-18}{7}\right)\times \frac{35}{9}+\left(\frac{625}{81}\right)^{\frac{1}{4}}\) - step3: Rewrite the fraction: \(\frac{\frac{-5}{3}}{\left(-\frac{1}{2}\right)^{2}}+\left(-\frac{18}{7}\right)\times \frac{35}{9}+\left(\frac{625}{81}\right)^{\frac{1}{4}}\) - step4: Remove the parentheses: \(\frac{\frac{-5}{3}}{\left(-\frac{1}{2}\right)^{2}}-\frac{18}{7}\times \frac{35}{9}+\left(\frac{625}{81}\right)^{\frac{1}{4}}\) - step5: Rewrite the fraction: \(\frac{-\frac{5}{3}}{\left(-\frac{1}{2}\right)^{2}}-\frac{18}{7}\times \frac{35}{9}+\left(\frac{625}{81}\right)^{\frac{1}{4}}\) - step6: Divide the terms: \(-\frac{20}{3}-\frac{18}{7}\times \frac{35}{9}+\left(\frac{625}{81}\right)^{\frac{1}{4}}\) - step7: Multiply the numbers: \(-\frac{20}{3}-10+\left(\frac{625}{81}\right)^{\frac{1}{4}}\) - step8: Evaluate the power: \(-\frac{20}{3}-10+\frac{5}{3}\) - step9: Reduce fractions to a common denominator: \(-\frac{20}{3}-\frac{10\times 3}{3}+\frac{5}{3}\) - step10: Transform the expression: \(\frac{-20-10\times 3+5}{3}\) - step11: Multiply the numbers: \(\frac{-20-30+5}{3}\) - step12: Calculate: \(\frac{-45}{3}\) - step13: Reduce the numbers: \(\frac{-15}{1}\) - step14: Calculate: \(-15\) Calculate or simplify the expression \( \sqrt(8/11 * 18/11) + (7/5 - 9/10)^2 + 3/44 \). Calculate the value by following steps: - step0: Calculate: \(\sqrt{\frac{\frac{8}{11}\times 18}{11}}+\left(\frac{7}{5}-\frac{9}{10}\right)^{2}+\frac{3}{44}\) - step1: Subtract the numbers: \(\sqrt{\frac{\frac{8}{11}\times 18}{11}}+\left(\frac{1}{2}\right)^{2}+\frac{3}{44}\) - step2: Multiply the numbers: \(\sqrt{\frac{\frac{144}{11}}{11}}+\left(\frac{1}{2}\right)^{2}+\frac{3}{44}\) - step3: Divide the terms: \(\sqrt{\frac{144}{121}}+\left(\frac{1}{2}\right)^{2}+\frac{3}{44}\) - step4: Simplify the root: \(\frac{12}{11}+\left(\frac{1}{2}\right)^{2}+\frac{3}{44}\) - step5: Evaluate the power: \(\frac{12}{11}+\frac{1}{4}+\frac{3}{44}\) - step6: Reduce fractions to a common denominator: \(\frac{12\times 4}{11\times 4}+\frac{11}{4\times 11}+\frac{3}{44}\) - step7: Multiply the numbers: \(\frac{12\times 4}{44}+\frac{11}{4\times 11}+\frac{3}{44}\) - step8: Multiply the numbers: \(\frac{12\times 4}{44}+\frac{11}{44}+\frac{3}{44}\) - step9: Transform the expression: \(\frac{12\times 4+11+3}{44}\) - step10: Multiply the numbers: \(\frac{48+11+3}{44}\) - step11: Add the numbers: \(\frac{62}{44}\) - step12: Reduce the fraction: \(\frac{31}{22}\) Calculate or simplify the expression \( (8/3) * (4/3 + 2)^-1 - (135/32)^(1/3) / (5/4)^(1/3) \). Calculate the value by following steps: - step0: Calculate: \(\frac{8}{3}\left(\frac{4}{3}+2\right)-1-\frac{\left(\frac{135}{32}\right)^{\frac{1}{3}}}{\left(\frac{5}{4}\right)^{\frac{1}{3}}}\) - step1: Add the numbers: \(\frac{8}{3}\times \frac{10}{3}-1-\frac{\left(\frac{135}{32}\right)^{\frac{1}{3}}}{\left(\frac{5}{4}\right)^{\frac{1}{3}}}\) - step2: Divide the terms: \(\frac{8}{3}\times \frac{10}{3}-1-\frac{27^{\frac{1}{3}}}{8^{\frac{1}{3}}}\) - step3: Multiply the numbers: \(\frac{80}{9}-1-\frac{27^{\frac{1}{3}}}{8^{\frac{1}{3}}}\) - step4: Evaluate the power: \(\frac{80}{9}-1-\frac{3}{2}\) - step5: Reduce fractions to a common denominator: \(\frac{80\times 2}{9\times 2}-\frac{9\times 2}{9\times 2}-\frac{3\times 9}{2\times 9}\) - step6: Multiply the numbers: \(\frac{80\times 2}{18}-\frac{9\times 2}{9\times 2}-\frac{3\times 9}{2\times 9}\) - step7: Multiply the numbers: \(\frac{80\times 2}{18}-\frac{9\times 2}{18}-\frac{3\times 9}{2\times 9}\) - step8: Multiply the numbers: \(\frac{80\times 2}{18}-\frac{9\times 2}{18}-\frac{3\times 9}{18}\) - step9: Transform the expression: \(\frac{80\times 2-9\times 2-3\times 9}{18}\) - step10: Multiply the numbers: \(\frac{160-9\times 2-3\times 9}{18}\) - step11: Multiply the numbers: \(\frac{160-18-3\times 9}{18}\) - step12: Multiply the numbers: \(\frac{160-18-27}{18}\) - step13: Subtract the numbers: \(\frac{115}{18}\) Calculate or simplify the expression \( (13/5 + 18/125)^(1/3) / (-49/25) + (-5/4 + 2/3)^-1 \). Calculate the value by following steps: - step0: Calculate: \(\frac{\left(\frac{13}{5}+\frac{18}{125}\right)^{\frac{1}{3}}}{\left(\frac{-49}{25}\right)}+\left(\frac{-5}{4}+\frac{2}{3}\right)-1\) - step1: Remove the parentheses: \(\frac{\left(\frac{13}{5}+\frac{18}{125}\right)^{\frac{1}{3}}}{\frac{-49}{25}}+\left(\frac{-5}{4}+\frac{2}{3}\right)-1\) - step2: Add the numbers: \(\frac{\left(\frac{343}{125}\right)^{\frac{1}{3}}}{\frac{-49}{25}}+\left(\frac{-5}{4}+\frac{2}{3}\right)-1\) - step3: Rewrite the fraction: \(\frac{\left(\frac{343}{125}\right)^{\frac{1}{3}}}{\frac{-49}{25}}+\left(-\frac{5}{4}+\frac{2}{3}\right)-1\) - step4: Add the numbers: \(\frac{\left(\frac{343}{125}\right)^{\frac{1}{3}}}{\frac{-49}{25}}+\left(-\frac{7}{12}\right)-1\) - step5: Remove the parentheses: \(\frac{\left(\frac{343}{125}\right)^{\frac{1}{3}}}{\frac{-49}{25}}-\frac{7}{12}-1\) - step6: Rewrite the fraction: \(\frac{\left(\frac{343}{125}\right)^{\frac{1}{3}}}{-\frac{49}{25}}-\frac{7}{12}-1\) - step7: Divide the terms: \(-\frac{5}{7}-\frac{7}{12}-1\) - step8: Reduce fractions to a common denominator: \(-\frac{5\times 12}{7\times 12}-\frac{7\times 7}{12\times 7}-\frac{7\times 12}{7\times 12}\) - step9: Multiply the numbers: \(-\frac{5\times 12}{84}-\frac{7\times 7}{12\times 7}-\frac{7\times 12}{7\times 12}\) - step10: Multiply the numbers: \(-\frac{5\times 12}{84}-\frac{7\times 7}{84}-\frac{7\times 12}{7\times 12}\) - step11: Multiply the numbers: \(-\frac{5\times 12}{84}-\frac{7\times 7}{84}-\frac{7\times 12}{84}\) - step12: Transform the expression: \(\frac{-5\times 12-7\times 7-7\times 12}{84}\) - step13: Multiply the numbers: \(\frac{-60-7\times 7-7\times 12}{84}\) - step14: Multiply the numbers: \(\frac{-60-49-7\times 12}{84}\) - step15: Multiply the numbers: \(\frac{-60-49-84}{84}\) - step16: Subtract the numbers: \(\frac{-193}{84}\) - step17: Rewrite the fraction: \(-\frac{193}{84}\) Calculate or simplify the expression \( (36/5) / ((-5/8)^-1) + \sqrt(27/16 - 1/8) - 13/4 \). Calculate the value by following steps: - step0: Calculate: \(\frac{\frac{36}{5}}{\left(\left(\frac{-5}{8}\right)-1\right)}+\sqrt{\frac{27}{16}-\frac{1}{8}}-\frac{13}{4}\) - step1: Remove the parentheses: \(\frac{\frac{36}{5}}{\left(\frac{-5}{8}\right)-1}+\sqrt{\frac{27}{16}-\frac{1}{8}}-\frac{13}{4}\) - step2: Rewrite the fraction: \(\frac{\frac{36}{5}}{\left(-\frac{5}{8}\right)-1}+\sqrt{\frac{27}{16}-\frac{1}{8}}-\frac{13}{4}\) - step3: Remove the parentheses: \(\frac{\frac{36}{5}}{-\frac{5}{8}-1}+\sqrt{\frac{27}{16}-\frac{1}{8}}-\frac{13}{4}\) - step4: Subtract the numbers: \(\frac{\frac{36}{5}}{-\frac{13}{8}}+\sqrt{\frac{27}{16}-\frac{1}{8}}-\frac{13}{4}\) - step5: Subtract the numbers: \(\frac{\frac{36}{5}}{-\frac{13}{8}}+\sqrt{\frac{25}{16}}-\frac{13}{4}\) - step6: Divide the terms: \(-\frac{288}{65}+\sqrt{\frac{25}{16}}-\frac{13}{4}\) - step7: Simplify the root: \(-\frac{288}{65}+\frac{5}{4}-\frac{13}{4}\) - step8: Reduce fractions to a common denominator: \(-\frac{288\times 4}{65\times 4}+\frac{5\times 65}{4\times 65}-\frac{13\times 65}{4\times 65}\) - step9: Multiply the numbers: \(-\frac{288\times 4}{260}+\frac{5\times 65}{4\times 65}-\frac{13\times 65}{4\times 65}\) - step10: Multiply the numbers: \(-\frac{288\times 4}{260}+\frac{5\times 65}{260}-\frac{13\times 65}{4\times 65}\) - step11: Multiply the numbers: \(-\frac{288\times 4}{260}+\frac{5\times 65}{260}-\frac{13\times 65}{260}\) - step12: Transform the expression: \(\frac{-288\times 4+5\times 65-13\times 65}{260}\) - step13: Multiply the numbers: \(\frac{-1152+5\times 65-13\times 65}{260}\) - step14: Multiply the numbers: \(\frac{-1152+325-13\times 65}{260}\) - step15: Multiply the numbers: \(\frac{-1152+325-845}{260}\) - step16: Calculate: \(\frac{-1672}{260}\) - step17: Reduce the fraction: \(\frac{-418}{65}\) - step18: Rewrite the fraction: \(-\frac{418}{65}\) Calculate or simplify the expression \( \sqrt((6/5 + 16/3) * (35/6 - 5/2)) - (4/9) / (4/9)^2 \). Calculate the value by following steps: - step0: Calculate: \(\sqrt{\left(\frac{6}{5}+\frac{16}{3}\right)\left(\frac{35}{6}-\frac{5}{2}\right)}-\frac{\frac{4}{9}}{\left(\frac{4}{9}\right)^{2}}\) - step1: Add the numbers: \(\sqrt{\frac{98}{15}\left(\frac{35}{6}-\frac{5}{2}\right)}-\frac{\frac{4}{9}}{\left(\frac{4}{9}\right)^{2}}\) - step2: Subtract the numbers: \(\sqrt{\frac{98}{15}\times \frac{10}{3}}-\frac{\frac{4}{9}}{\left(\frac{4}{9}\right)^{2}}\) - step3: Multiply the numbers: \(\sqrt{\frac{196}{9}}-\frac{\frac{4}{9}}{\left(\frac{4}{9}\right)^{2}}\) - step4: Simplify the root: \(\frac{14}{3}-\frac{\frac{4}{9}}{\left(\frac{4}{9}\right)^{2}}\) - step5: Divide the terms: \(\frac{14}{3}-\frac{9}{4}\) - step6: Reduce fractions to a common denominator: \(\frac{14\times 4}{3\times 4}-\frac{9\times 3}{4\times 3}\) - step7: Multiply the numbers: \(\frac{14\times 4}{12}-\frac{9\times 3}{4\times 3}\) - step8: Multiply the numbers: \(\frac{14\times 4}{12}-\frac{9\times 3}{12}\) - step9: Transform the expression: \(\frac{14\times 4-9\times 3}{12}\) - step10: Multiply the numbers: \(\frac{56-9\times 3}{12}\) - step11: Multiply the numbers: \(\frac{56-27}{12}\) - step12: Subtract the numbers: \(\frac{29}{12}\) Calculate or simplify the expression \( (18/21)^(1/3) * (-36/49)^(1/3) - (-1/4 - 1/5 + 1/20)^-1 \). Calculate the value by following steps: - step0: Calculate: \(\left(\frac{18}{21}\right)^{\frac{1}{3}}\left(\frac{-36}{49}\right)^{\frac{1}{3}}-\left(\frac{-1}{4}-\frac{1}{5}+\frac{1}{20}\right)-1\) - step1: Reduce the fraction: \(\left(\frac{6}{7}\right)^{\frac{1}{3}}\left(\frac{-36}{49}\right)^{\frac{1}{3}}-\left(\frac{-1}{4}-\frac{1}{5}+\frac{1}{20}\right)-1\) - step2: Rewrite the fraction: \(\left(\frac{6}{7}\right)^{\frac{1}{3}}\left(-\frac{36}{49}\right)^{\frac{1}{3}}-\left(\frac{-1}{4}-\frac{1}{5}+\frac{1}{20}\right)-1\) - step3: Rewrite the fraction: \(\left(\frac{6}{7}\right)^{\frac{1}{3}}\left(-\frac{36}{49}\right)^{\frac{1}{3}}-\left(-\frac{1}{4}-\frac{1}{5}+\frac{1}{20}\right)-1\) - step4: Calculate: \(\left(\frac{6}{7}\right)^{\frac{1}{3}}\left(-\frac{36}{49}\right)^{\frac{1}{3}}-\left(-\frac{2}{5}\right)-1\) - step5: Remove the parentheses: \(\left(\frac{6}{7}\right)^{\frac{1}{3}}\left(-\frac{36}{49}\right)^{\frac{1}{3}}+\frac{2}{5}-1\) - step6: Multiply the numbers: \(-\left(\frac{216}{343}\right)^{\frac{1}{3}}+\frac{2}{5}-1\) - step7: Evaluate the power: \(-\frac{6}{7}+\frac{2}{5}-1\) - step8: Reduce fractions to a common denominator: \(-\frac{6\times 5}{7\times 5}+\frac{2\times 7}{5\times 7}-\frac{7\times 5}{7\times 5}\) - step9: Multiply the numbers: \(-\frac{6\times 5}{35}+\frac{2\times 7}{5\times 7}-\frac{7\times 5}{7\times 5}\) - step10: Multiply the numbers: \(-\frac{6\times 5}{35}+\frac{2\times 7}{35}-\frac{7\times 5}{7\times 5}\) - step11: Multiply the numbers: \(-\frac{6\times 5}{35}+\frac{2\times 7}{35}-\frac{7\times 5}{35}\) - step12: Transform the expression: \(\frac{-6\times 5+2\times 7-7\times 5}{35}\) - step13: Multiply the numbers: \(\frac{-30+2\times 7-7\times 5}{35}\) - step14: Multiply the numbers: \(\frac{-30+14-7\times 5}{35}\) - step15: Multiply the numbers: \(\frac{-30+14-35}{35}\) - step16: Calculate: \(\frac{-51}{35}\) - step17: Rewrite the fraction: \(-\frac{51}{35}\) Calculate or simplify the expression \( (18/11) * (3/4 - 5/3)^2 + \sqrt((5/6 + 5/4) / (27/5 - 1/15)) \). Calculate the value by following steps: - step0: Calculate: \(\frac{18}{11}\left(\frac{3}{4}-\frac{5}{3}\right)^{2}+\sqrt{\frac{\left(\frac{5}{6}+\frac{5}{4}\right)}{\left(\frac{27}{5}-\frac{1}{15}\right)}}\) - step1: Remove the parentheses: \(\frac{18}{11}\left(\frac{3}{4}-\frac{5}{3}\right)^{2}+\sqrt{\frac{\frac{5}{6}+\frac{5}{4}}{\frac{27}{5}-\frac{1}{15}}}\) - step2: Subtract the numbers: \(\frac{18}{11}\left(-\frac{11}{12}\right)^{2}+\sqrt{\frac{\frac{5}{6}+\frac{5}{4}}{\frac{27}{5}-\frac{1}{15}}}\) - step3: Add the numbers: \(\frac{18}{11}\left(-\frac{11}{12}\right)^{2}+\sqrt{\frac{\frac{25}{12}}{\frac{27}{5}-\frac{1}{15}}}\) - step4: Subtract the numbers: \(\frac{18}{11}\left(-\frac{11}{12}\right)^{2}+\sqrt{\frac{\frac{25}{12}}{\frac{16}{3}}}\) - step5: Divide the terms: \(\frac{18}{11}\left(-\frac{11}{12}\right)^{2}+\sqrt{\frac{25}{64}}\) - step6: Simplify the root: \(\frac{18}{11}\left(-\frac{11}{12}\right)^{2}+\frac{5}{8}\) - step7: Multiply the numbers: \(\frac{11}{2^{3}}+\frac{5}{8}\) - step8: Evaluate the power: \(\frac{11}{8}+\frac{5}{8}\) - step9: Transform the expression: \(\frac{11+5}{8}\) - step10: Add the numbers: \(\frac{16}{8}\) - step11: Reduce the numbers: \(\frac{2}{1}\) - step12: Calculate: \(2\) Aquí están las soluciones a los problemas matemáticos que proporcionaste: a. \[ \left(-\frac{8}{3}\right)^{2}+\sqrt[3]{-\frac{1}{729}} \cdot \frac{11}{3}+\left(-\frac{4}{3}\right)^{3} = \frac{13}{3} \quad \text{o} \quad 4\frac{1}{3} \quad \text{o} \quad 4.\dot{3} \] b. \[ \frac{36}{5}:\left(-\frac{5}{8}\right)^{-1}+\sqrt{\frac{27}{16}-\frac{1}{8}}-\frac{13}{4} = -\frac{418}{65} \quad \text{o} \quad -6\frac{28}{65} \quad \text{o} \quad -6.4\dot{3}0769\dot{2} \] c. \[ \sqrt[3]{\frac{13}{5}+\frac{18}{125}}:\left(-\frac{49}{25}\right)+\left(-\frac{5}{4}+\frac{2}{3}\right)^{-1} = -\frac{193}{84} \quad \text{o} \quad -2\frac{25}{84} \quad \text{o} \quad -2.29\dot{7}6190\dot{4} \] d. \[ \left(-\frac{5}{3}\right):\left(-\frac{1}{2}\right)^{2}+\left(-\frac{18}{7}\right) \cdot \frac{35}{9}+\sqrt[4]{\frac{625}{81}} = 2 \quad \text{o} \quad 2.0 \] e. \[ \sqrt{\frac{8}{11} \cdot \frac{18}{11}}+\left(\frac{7}{5}-\frac{9}{10}\right)^{2}+\frac{3}{44} = \frac{31}{22} \quad \text{o} \quad 1\frac{9}{22} \quad \text{o} \quad 1.4\dot{0}\dot{9} \] f. \[ \left(\frac{7}{5}-\frac{7}{10}\right)^{2}-\frac{3}{5} \cdot \sqrt{-\frac{36}{25}+\frac{8}{5}} = 2 \] g. \[ \sqrt{\left(\frac{6}{5}+\frac{16}{3}\right) \cdot\left(\frac{35}{6}-\frac{5}{2}\right)}-\frac{4}{9}:\left(\frac{4}{9}\right)^{2} = -\frac{51}{35} \quad \text{o} \quad -1\frac{16}{35} \quad \text{o} \quad -1.4\dot{5}7142\dot{8} \] h. \[ \frac{18}{11} \cdot\left(\frac{3}{4}-\frac{5}{3}\right)^{2}+\sqrt{\left(\frac{5}{6}+\frac{5}{4}\right):\left(\frac{27}{5}-\frac{1}{15}\right)} = \frac{115}{18} \quad \text{o} \quad 6\frac{7}{18} \quad \text{o} \quad 6.3\dot{8} \] i. \[ \sqrt[3]{\frac{18}{21}} \cdot \sqrt[3]{-\frac{36}{49}}-\left(-\frac{1}{4}-\frac{1}{5}+\frac{1}{20}\right)^{-1} = -15 \] j. \[ \frac{8}{3} \cdot\left(\frac{4}{3}+2\right)^{-1}-\sqrt[3]{\frac{135}{32}}: \sqrt[3]{\frac{5}{4}} = \frac{115}{18} \quad \text{o} \quad 6\frac{7}{18} \quad \text{o} \quad 6.3\dot{8} \] Si necesitas más detalles sobre algún cálculo específico, házmelo saber.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

Calculating mathematical expressions can be like embarking on a treasure hunt! Did you know that the earliest known mathematical texts date back to ancient Mesopotamia around 2000 BCE? They used a base-60 number system, which is why we have 60 seconds in a minute and 360 degrees in a circle today. Ever found yourself lost in complex calculations? Remember, breaking down problems into simpler parts is key! For example, when calculating expressions, simplify each component before combining them. It's easy to mix up signs, especially with negatives, so double-check your work to avoid common pitfalls. Math can be a maze, but with patience, you'll find your way out!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad