Responder
a. \( \frac{13}{3} \) o \( 4\frac{1}{3} \) o \( 4.\dot{3} \)
b. \( -\frac{418}{65} \) o \( -6\frac{28}{65} \) o \( -6.4\dot{3}0769\dot{2} \)
c. \( -\frac{193}{84} \) o \( -2\frac{25}{84} \) o \( -2.29\dot{7}6190\dot{4} \)
d. \( 2 \) o \( 2.0 \)
e. \( \frac{31}{22} \) o \( 1\frac{9}{22} \) o \( 1.4\dot{0}\dot{9} \)
f. \( 2 \)
g. \( -\frac{51}{35} \) o \( -1\frac{16}{35} \) o \( -1.4\dot{5}7142\dot{8} \)
h. \( \frac{115}{18} \) o \( 6\frac{7}{18} \) o \( 6.3\dot{8} \)
i. \( -15 \)
j. \( \frac{115}{18} \) o \( 6\frac{7}{18} \) o \( 6.3\dot{8} \)
Solución
Calculate the value by following steps:
- step0: Calculate:
\(\left(\frac{-8}{3}\right)^{2}+\left(\frac{-1}{729}\right)^{\frac{1}{3}}\times \frac{11}{3}+\left(\frac{-4}{3}\right)^{3}\)
- step1: Rewrite the fraction:
\(\left(\frac{-8}{3}\right)^{2}+\left(-\frac{1}{729}\right)^{\frac{1}{3}}\times \frac{11}{3}+\left(\frac{-4}{3}\right)^{3}\)
- step2: Rewrite the fraction:
\(\left(-\frac{8}{3}\right)^{2}+\left(-\frac{1}{729}\right)^{\frac{1}{3}}\times \frac{11}{3}+\left(\frac{-4}{3}\right)^{3}\)
- step3: Rewrite the fraction:
\(\left(-\frac{8}{3}\right)^{2}+\left(-\frac{1}{729}\right)^{\frac{1}{3}}\times \frac{11}{3}+\left(-\frac{4}{3}\right)^{3}\)
- step4: Multiply the numbers:
\(\left(-\frac{8}{3}\right)^{2}-\frac{11}{27}+\left(-\frac{4}{3}\right)^{3}\)
- step5: Evaluate the power:
\(\frac{64}{9}-\frac{11}{27}+\left(-\frac{4}{3}\right)^{3}\)
- step6: Evaluate the power:
\(\frac{64}{9}-\frac{11}{27}-\frac{64}{27}\)
- step7: Reduce fractions to a common denominator:
\(\frac{64\times 3}{9\times 3}-\frac{11}{27}-\frac{64}{27}\)
- step8: Multiply the numbers:
\(\frac{64\times 3}{27}-\frac{11}{27}-\frac{64}{27}\)
- step9: Transform the expression:
\(\frac{64\times 3-11-64}{27}\)
- step10: Multiply the numbers:
\(\frac{192-11-64}{27}\)
- step11: Subtract the numbers:
\(\frac{117}{27}\)
- step12: Reduce the fraction:
\(\frac{13}{3}\)
Calculate or simplify the expression \( (7/5 - 7/10)^2 - (3/5) * \sqrt(-36/25 + 8/5) \).
Calculate the value by following steps:
- step0: Calculate:
\(\left(\frac{7}{5}-\frac{7}{10}\right)^{2}-\frac{3}{5}\sqrt{\frac{-36}{25}+\frac{8}{5}}\)
- step1: Subtract the numbers:
\(\left(\frac{7}{10}\right)^{2}-\frac{3}{5}\sqrt{\frac{-36}{25}+\frac{8}{5}}\)
- step2: Rewrite the fraction:
\(\left(\frac{7}{10}\right)^{2}-\frac{3}{5}\sqrt{-\frac{36}{25}+\frac{8}{5}}\)
- step3: Add the numbers:
\(\left(\frac{7}{10}\right)^{2}-\frac{3}{5}\sqrt{\frac{4}{25}}\)
- step4: Simplify the root:
\(\left(\frac{7}{10}\right)^{2}-\frac{3}{5}\times \frac{2}{5}\)
- step5: Multiply the numbers:
\(\left(\frac{7}{10}\right)^{2}-\frac{6}{25}\)
- step6: Simplify:
\(\frac{7^{2}}{10^{2}}-\frac{6}{25}\)
- step7: Evaluate the power:
\(\frac{49}{100}-\frac{6}{25}\)
- step8: Reduce fractions to a common denominator:
\(\frac{49}{100}-\frac{6\times 4}{25\times 4}\)
- step9: Multiply the numbers:
\(\frac{49}{100}-\frac{6\times 4}{100}\)
- step10: Transform the expression:
\(\frac{49-6\times 4}{100}\)
- step11: Multiply the numbers:
\(\frac{49-24}{100}\)
- step12: Subtract the numbers:
\(\frac{25}{100}\)
- step13: Reduce the fraction:
\(\frac{1}{4}\)
Calculate or simplify the expression \( (-5/3) / (-1/2)^2 + (-18/7) * (35/9) + (625/81)^(1/4) \).
Calculate the value by following steps:
- step0: Calculate:
\(\frac{\left(\frac{-5}{3}\right)}{\left(\frac{-1}{2}\right)^{2}}+\left(\frac{-18}{7}\right)\times \frac{35}{9}+\left(\frac{625}{81}\right)^{\frac{1}{4}}\)
- step1: Remove the parentheses:
\(\frac{\frac{-5}{3}}{\left(\frac{-1}{2}\right)^{2}}+\left(\frac{-18}{7}\right)\times \frac{35}{9}+\left(\frac{625}{81}\right)^{\frac{1}{4}}\)
- step2: Rewrite the fraction:
\(\frac{\frac{-5}{3}}{\left(-\frac{1}{2}\right)^{2}}+\left(\frac{-18}{7}\right)\times \frac{35}{9}+\left(\frac{625}{81}\right)^{\frac{1}{4}}\)
- step3: Rewrite the fraction:
\(\frac{\frac{-5}{3}}{\left(-\frac{1}{2}\right)^{2}}+\left(-\frac{18}{7}\right)\times \frac{35}{9}+\left(\frac{625}{81}\right)^{\frac{1}{4}}\)
- step4: Remove the parentheses:
\(\frac{\frac{-5}{3}}{\left(-\frac{1}{2}\right)^{2}}-\frac{18}{7}\times \frac{35}{9}+\left(\frac{625}{81}\right)^{\frac{1}{4}}\)
- step5: Rewrite the fraction:
\(\frac{-\frac{5}{3}}{\left(-\frac{1}{2}\right)^{2}}-\frac{18}{7}\times \frac{35}{9}+\left(\frac{625}{81}\right)^{\frac{1}{4}}\)
- step6: Divide the terms:
\(-\frac{20}{3}-\frac{18}{7}\times \frac{35}{9}+\left(\frac{625}{81}\right)^{\frac{1}{4}}\)
- step7: Multiply the numbers:
\(-\frac{20}{3}-10+\left(\frac{625}{81}\right)^{\frac{1}{4}}\)
- step8: Evaluate the power:
\(-\frac{20}{3}-10+\frac{5}{3}\)
- step9: Reduce fractions to a common denominator:
\(-\frac{20}{3}-\frac{10\times 3}{3}+\frac{5}{3}\)
- step10: Transform the expression:
\(\frac{-20-10\times 3+5}{3}\)
- step11: Multiply the numbers:
\(\frac{-20-30+5}{3}\)
- step12: Calculate:
\(\frac{-45}{3}\)
- step13: Reduce the numbers:
\(\frac{-15}{1}\)
- step14: Calculate:
\(-15\)
Calculate or simplify the expression \( \sqrt(8/11 * 18/11) + (7/5 - 9/10)^2 + 3/44 \).
Calculate the value by following steps:
- step0: Calculate:
\(\sqrt{\frac{\frac{8}{11}\times 18}{11}}+\left(\frac{7}{5}-\frac{9}{10}\right)^{2}+\frac{3}{44}\)
- step1: Subtract the numbers:
\(\sqrt{\frac{\frac{8}{11}\times 18}{11}}+\left(\frac{1}{2}\right)^{2}+\frac{3}{44}\)
- step2: Multiply the numbers:
\(\sqrt{\frac{\frac{144}{11}}{11}}+\left(\frac{1}{2}\right)^{2}+\frac{3}{44}\)
- step3: Divide the terms:
\(\sqrt{\frac{144}{121}}+\left(\frac{1}{2}\right)^{2}+\frac{3}{44}\)
- step4: Simplify the root:
\(\frac{12}{11}+\left(\frac{1}{2}\right)^{2}+\frac{3}{44}\)
- step5: Evaluate the power:
\(\frac{12}{11}+\frac{1}{4}+\frac{3}{44}\)
- step6: Reduce fractions to a common denominator:
\(\frac{12\times 4}{11\times 4}+\frac{11}{4\times 11}+\frac{3}{44}\)
- step7: Multiply the numbers:
\(\frac{12\times 4}{44}+\frac{11}{4\times 11}+\frac{3}{44}\)
- step8: Multiply the numbers:
\(\frac{12\times 4}{44}+\frac{11}{44}+\frac{3}{44}\)
- step9: Transform the expression:
\(\frac{12\times 4+11+3}{44}\)
- step10: Multiply the numbers:
\(\frac{48+11+3}{44}\)
- step11: Add the numbers:
\(\frac{62}{44}\)
- step12: Reduce the fraction:
\(\frac{31}{22}\)
Calculate or simplify the expression \( (8/3) * (4/3 + 2)^-1 - (135/32)^(1/3) / (5/4)^(1/3) \).
Calculate the value by following steps:
- step0: Calculate:
\(\frac{8}{3}\left(\frac{4}{3}+2\right)-1-\frac{\left(\frac{135}{32}\right)^{\frac{1}{3}}}{\left(\frac{5}{4}\right)^{\frac{1}{3}}}\)
- step1: Add the numbers:
\(\frac{8}{3}\times \frac{10}{3}-1-\frac{\left(\frac{135}{32}\right)^{\frac{1}{3}}}{\left(\frac{5}{4}\right)^{\frac{1}{3}}}\)
- step2: Divide the terms:
\(\frac{8}{3}\times \frac{10}{3}-1-\frac{27^{\frac{1}{3}}}{8^{\frac{1}{3}}}\)
- step3: Multiply the numbers:
\(\frac{80}{9}-1-\frac{27^{\frac{1}{3}}}{8^{\frac{1}{3}}}\)
- step4: Evaluate the power:
\(\frac{80}{9}-1-\frac{3}{2}\)
- step5: Reduce fractions to a common denominator:
\(\frac{80\times 2}{9\times 2}-\frac{9\times 2}{9\times 2}-\frac{3\times 9}{2\times 9}\)
- step6: Multiply the numbers:
\(\frac{80\times 2}{18}-\frac{9\times 2}{9\times 2}-\frac{3\times 9}{2\times 9}\)
- step7: Multiply the numbers:
\(\frac{80\times 2}{18}-\frac{9\times 2}{18}-\frac{3\times 9}{2\times 9}\)
- step8: Multiply the numbers:
\(\frac{80\times 2}{18}-\frac{9\times 2}{18}-\frac{3\times 9}{18}\)
- step9: Transform the expression:
\(\frac{80\times 2-9\times 2-3\times 9}{18}\)
- step10: Multiply the numbers:
\(\frac{160-9\times 2-3\times 9}{18}\)
- step11: Multiply the numbers:
\(\frac{160-18-3\times 9}{18}\)
- step12: Multiply the numbers:
\(\frac{160-18-27}{18}\)
- step13: Subtract the numbers:
\(\frac{115}{18}\)
Calculate or simplify the expression \( (13/5 + 18/125)^(1/3) / (-49/25) + (-5/4 + 2/3)^-1 \).
Calculate the value by following steps:
- step0: Calculate:
\(\frac{\left(\frac{13}{5}+\frac{18}{125}\right)^{\frac{1}{3}}}{\left(\frac{-49}{25}\right)}+\left(\frac{-5}{4}+\frac{2}{3}\right)-1\)
- step1: Remove the parentheses:
\(\frac{\left(\frac{13}{5}+\frac{18}{125}\right)^{\frac{1}{3}}}{\frac{-49}{25}}+\left(\frac{-5}{4}+\frac{2}{3}\right)-1\)
- step2: Add the numbers:
\(\frac{\left(\frac{343}{125}\right)^{\frac{1}{3}}}{\frac{-49}{25}}+\left(\frac{-5}{4}+\frac{2}{3}\right)-1\)
- step3: Rewrite the fraction:
\(\frac{\left(\frac{343}{125}\right)^{\frac{1}{3}}}{\frac{-49}{25}}+\left(-\frac{5}{4}+\frac{2}{3}\right)-1\)
- step4: Add the numbers:
\(\frac{\left(\frac{343}{125}\right)^{\frac{1}{3}}}{\frac{-49}{25}}+\left(-\frac{7}{12}\right)-1\)
- step5: Remove the parentheses:
\(\frac{\left(\frac{343}{125}\right)^{\frac{1}{3}}}{\frac{-49}{25}}-\frac{7}{12}-1\)
- step6: Rewrite the fraction:
\(\frac{\left(\frac{343}{125}\right)^{\frac{1}{3}}}{-\frac{49}{25}}-\frac{7}{12}-1\)
- step7: Divide the terms:
\(-\frac{5}{7}-\frac{7}{12}-1\)
- step8: Reduce fractions to a common denominator:
\(-\frac{5\times 12}{7\times 12}-\frac{7\times 7}{12\times 7}-\frac{7\times 12}{7\times 12}\)
- step9: Multiply the numbers:
\(-\frac{5\times 12}{84}-\frac{7\times 7}{12\times 7}-\frac{7\times 12}{7\times 12}\)
- step10: Multiply the numbers:
\(-\frac{5\times 12}{84}-\frac{7\times 7}{84}-\frac{7\times 12}{7\times 12}\)
- step11: Multiply the numbers:
\(-\frac{5\times 12}{84}-\frac{7\times 7}{84}-\frac{7\times 12}{84}\)
- step12: Transform the expression:
\(\frac{-5\times 12-7\times 7-7\times 12}{84}\)
- step13: Multiply the numbers:
\(\frac{-60-7\times 7-7\times 12}{84}\)
- step14: Multiply the numbers:
\(\frac{-60-49-7\times 12}{84}\)
- step15: Multiply the numbers:
\(\frac{-60-49-84}{84}\)
- step16: Subtract the numbers:
\(\frac{-193}{84}\)
- step17: Rewrite the fraction:
\(-\frac{193}{84}\)
Calculate or simplify the expression \( (36/5) / ((-5/8)^-1) + \sqrt(27/16 - 1/8) - 13/4 \).
Calculate the value by following steps:
- step0: Calculate:
\(\frac{\frac{36}{5}}{\left(\left(\frac{-5}{8}\right)-1\right)}+\sqrt{\frac{27}{16}-\frac{1}{8}}-\frac{13}{4}\)
- step1: Remove the parentheses:
\(\frac{\frac{36}{5}}{\left(\frac{-5}{8}\right)-1}+\sqrt{\frac{27}{16}-\frac{1}{8}}-\frac{13}{4}\)
- step2: Rewrite the fraction:
\(\frac{\frac{36}{5}}{\left(-\frac{5}{8}\right)-1}+\sqrt{\frac{27}{16}-\frac{1}{8}}-\frac{13}{4}\)
- step3: Remove the parentheses:
\(\frac{\frac{36}{5}}{-\frac{5}{8}-1}+\sqrt{\frac{27}{16}-\frac{1}{8}}-\frac{13}{4}\)
- step4: Subtract the numbers:
\(\frac{\frac{36}{5}}{-\frac{13}{8}}+\sqrt{\frac{27}{16}-\frac{1}{8}}-\frac{13}{4}\)
- step5: Subtract the numbers:
\(\frac{\frac{36}{5}}{-\frac{13}{8}}+\sqrt{\frac{25}{16}}-\frac{13}{4}\)
- step6: Divide the terms:
\(-\frac{288}{65}+\sqrt{\frac{25}{16}}-\frac{13}{4}\)
- step7: Simplify the root:
\(-\frac{288}{65}+\frac{5}{4}-\frac{13}{4}\)
- step8: Reduce fractions to a common denominator:
\(-\frac{288\times 4}{65\times 4}+\frac{5\times 65}{4\times 65}-\frac{13\times 65}{4\times 65}\)
- step9: Multiply the numbers:
\(-\frac{288\times 4}{260}+\frac{5\times 65}{4\times 65}-\frac{13\times 65}{4\times 65}\)
- step10: Multiply the numbers:
\(-\frac{288\times 4}{260}+\frac{5\times 65}{260}-\frac{13\times 65}{4\times 65}\)
- step11: Multiply the numbers:
\(-\frac{288\times 4}{260}+\frac{5\times 65}{260}-\frac{13\times 65}{260}\)
- step12: Transform the expression:
\(\frac{-288\times 4+5\times 65-13\times 65}{260}\)
- step13: Multiply the numbers:
\(\frac{-1152+5\times 65-13\times 65}{260}\)
- step14: Multiply the numbers:
\(\frac{-1152+325-13\times 65}{260}\)
- step15: Multiply the numbers:
\(\frac{-1152+325-845}{260}\)
- step16: Calculate:
\(\frac{-1672}{260}\)
- step17: Reduce the fraction:
\(\frac{-418}{65}\)
- step18: Rewrite the fraction:
\(-\frac{418}{65}\)
Calculate or simplify the expression \( \sqrt((6/5 + 16/3) * (35/6 - 5/2)) - (4/9) / (4/9)^2 \).
Calculate the value by following steps:
- step0: Calculate:
\(\sqrt{\left(\frac{6}{5}+\frac{16}{3}\right)\left(\frac{35}{6}-\frac{5}{2}\right)}-\frac{\frac{4}{9}}{\left(\frac{4}{9}\right)^{2}}\)
- step1: Add the numbers:
\(\sqrt{\frac{98}{15}\left(\frac{35}{6}-\frac{5}{2}\right)}-\frac{\frac{4}{9}}{\left(\frac{4}{9}\right)^{2}}\)
- step2: Subtract the numbers:
\(\sqrt{\frac{98}{15}\times \frac{10}{3}}-\frac{\frac{4}{9}}{\left(\frac{4}{9}\right)^{2}}\)
- step3: Multiply the numbers:
\(\sqrt{\frac{196}{9}}-\frac{\frac{4}{9}}{\left(\frac{4}{9}\right)^{2}}\)
- step4: Simplify the root:
\(\frac{14}{3}-\frac{\frac{4}{9}}{\left(\frac{4}{9}\right)^{2}}\)
- step5: Divide the terms:
\(\frac{14}{3}-\frac{9}{4}\)
- step6: Reduce fractions to a common denominator:
\(\frac{14\times 4}{3\times 4}-\frac{9\times 3}{4\times 3}\)
- step7: Multiply the numbers:
\(\frac{14\times 4}{12}-\frac{9\times 3}{4\times 3}\)
- step8: Multiply the numbers:
\(\frac{14\times 4}{12}-\frac{9\times 3}{12}\)
- step9: Transform the expression:
\(\frac{14\times 4-9\times 3}{12}\)
- step10: Multiply the numbers:
\(\frac{56-9\times 3}{12}\)
- step11: Multiply the numbers:
\(\frac{56-27}{12}\)
- step12: Subtract the numbers:
\(\frac{29}{12}\)
Calculate or simplify the expression \( (18/21)^(1/3) * (-36/49)^(1/3) - (-1/4 - 1/5 + 1/20)^-1 \).
Calculate the value by following steps:
- step0: Calculate:
\(\left(\frac{18}{21}\right)^{\frac{1}{3}}\left(\frac{-36}{49}\right)^{\frac{1}{3}}-\left(\frac{-1}{4}-\frac{1}{5}+\frac{1}{20}\right)-1\)
- step1: Reduce the fraction:
\(\left(\frac{6}{7}\right)^{\frac{1}{3}}\left(\frac{-36}{49}\right)^{\frac{1}{3}}-\left(\frac{-1}{4}-\frac{1}{5}+\frac{1}{20}\right)-1\)
- step2: Rewrite the fraction:
\(\left(\frac{6}{7}\right)^{\frac{1}{3}}\left(-\frac{36}{49}\right)^{\frac{1}{3}}-\left(\frac{-1}{4}-\frac{1}{5}+\frac{1}{20}\right)-1\)
- step3: Rewrite the fraction:
\(\left(\frac{6}{7}\right)^{\frac{1}{3}}\left(-\frac{36}{49}\right)^{\frac{1}{3}}-\left(-\frac{1}{4}-\frac{1}{5}+\frac{1}{20}\right)-1\)
- step4: Calculate:
\(\left(\frac{6}{7}\right)^{\frac{1}{3}}\left(-\frac{36}{49}\right)^{\frac{1}{3}}-\left(-\frac{2}{5}\right)-1\)
- step5: Remove the parentheses:
\(\left(\frac{6}{7}\right)^{\frac{1}{3}}\left(-\frac{36}{49}\right)^{\frac{1}{3}}+\frac{2}{5}-1\)
- step6: Multiply the numbers:
\(-\left(\frac{216}{343}\right)^{\frac{1}{3}}+\frac{2}{5}-1\)
- step7: Evaluate the power:
\(-\frac{6}{7}+\frac{2}{5}-1\)
- step8: Reduce fractions to a common denominator:
\(-\frac{6\times 5}{7\times 5}+\frac{2\times 7}{5\times 7}-\frac{7\times 5}{7\times 5}\)
- step9: Multiply the numbers:
\(-\frac{6\times 5}{35}+\frac{2\times 7}{5\times 7}-\frac{7\times 5}{7\times 5}\)
- step10: Multiply the numbers:
\(-\frac{6\times 5}{35}+\frac{2\times 7}{35}-\frac{7\times 5}{7\times 5}\)
- step11: Multiply the numbers:
\(-\frac{6\times 5}{35}+\frac{2\times 7}{35}-\frac{7\times 5}{35}\)
- step12: Transform the expression:
\(\frac{-6\times 5+2\times 7-7\times 5}{35}\)
- step13: Multiply the numbers:
\(\frac{-30+2\times 7-7\times 5}{35}\)
- step14: Multiply the numbers:
\(\frac{-30+14-7\times 5}{35}\)
- step15: Multiply the numbers:
\(\frac{-30+14-35}{35}\)
- step16: Calculate:
\(\frac{-51}{35}\)
- step17: Rewrite the fraction:
\(-\frac{51}{35}\)
Calculate or simplify the expression \( (18/11) * (3/4 - 5/3)^2 + \sqrt((5/6 + 5/4) / (27/5 - 1/15)) \).
Calculate the value by following steps:
- step0: Calculate:
\(\frac{18}{11}\left(\frac{3}{4}-\frac{5}{3}\right)^{2}+\sqrt{\frac{\left(\frac{5}{6}+\frac{5}{4}\right)}{\left(\frac{27}{5}-\frac{1}{15}\right)}}\)
- step1: Remove the parentheses:
\(\frac{18}{11}\left(\frac{3}{4}-\frac{5}{3}\right)^{2}+\sqrt{\frac{\frac{5}{6}+\frac{5}{4}}{\frac{27}{5}-\frac{1}{15}}}\)
- step2: Subtract the numbers:
\(\frac{18}{11}\left(-\frac{11}{12}\right)^{2}+\sqrt{\frac{\frac{5}{6}+\frac{5}{4}}{\frac{27}{5}-\frac{1}{15}}}\)
- step3: Add the numbers:
\(\frac{18}{11}\left(-\frac{11}{12}\right)^{2}+\sqrt{\frac{\frac{25}{12}}{\frac{27}{5}-\frac{1}{15}}}\)
- step4: Subtract the numbers:
\(\frac{18}{11}\left(-\frac{11}{12}\right)^{2}+\sqrt{\frac{\frac{25}{12}}{\frac{16}{3}}}\)
- step5: Divide the terms:
\(\frac{18}{11}\left(-\frac{11}{12}\right)^{2}+\sqrt{\frac{25}{64}}\)
- step6: Simplify the root:
\(\frac{18}{11}\left(-\frac{11}{12}\right)^{2}+\frac{5}{8}\)
- step7: Multiply the numbers:
\(\frac{11}{2^{3}}+\frac{5}{8}\)
- step8: Evaluate the power:
\(\frac{11}{8}+\frac{5}{8}\)
- step9: Transform the expression:
\(\frac{11+5}{8}\)
- step10: Add the numbers:
\(\frac{16}{8}\)
- step11: Reduce the numbers:
\(\frac{2}{1}\)
- step12: Calculate:
\(2\)
Aquí están las soluciones a los problemas matemáticos que proporcionaste:
a.
\[
\left(-\frac{8}{3}\right)^{2}+\sqrt[3]{-\frac{1}{729}} \cdot \frac{11}{3}+\left(-\frac{4}{3}\right)^{3} = \frac{13}{3} \quad \text{o} \quad 4\frac{1}{3} \quad \text{o} \quad 4.\dot{3}
\]
b.
\[
\frac{36}{5}:\left(-\frac{5}{8}\right)^{-1}+\sqrt{\frac{27}{16}-\frac{1}{8}}-\frac{13}{4} = -\frac{418}{65} \quad \text{o} \quad -6\frac{28}{65} \quad \text{o} \quad -6.4\dot{3}0769\dot{2}
\]
c.
\[
\sqrt[3]{\frac{13}{5}+\frac{18}{125}}:\left(-\frac{49}{25}\right)+\left(-\frac{5}{4}+\frac{2}{3}\right)^{-1} = -\frac{193}{84} \quad \text{o} \quad -2\frac{25}{84} \quad \text{o} \quad -2.29\dot{7}6190\dot{4}
\]
d.
\[
\left(-\frac{5}{3}\right):\left(-\frac{1}{2}\right)^{2}+\left(-\frac{18}{7}\right) \cdot \frac{35}{9}+\sqrt[4]{\frac{625}{81}} = 2 \quad \text{o} \quad 2.0
\]
e.
\[
\sqrt{\frac{8}{11} \cdot \frac{18}{11}}+\left(\frac{7}{5}-\frac{9}{10}\right)^{2}+\frac{3}{44} = \frac{31}{22} \quad \text{o} \quad 1\frac{9}{22} \quad \text{o} \quad 1.4\dot{0}\dot{9}
\]
f.
\[
\left(\frac{7}{5}-\frac{7}{10}\right)^{2}-\frac{3}{5} \cdot \sqrt{-\frac{36}{25}+\frac{8}{5}} = 2
\]
g.
\[
\sqrt{\left(\frac{6}{5}+\frac{16}{3}\right) \cdot\left(\frac{35}{6}-\frac{5}{2}\right)}-\frac{4}{9}:\left(\frac{4}{9}\right)^{2} = -\frac{51}{35} \quad \text{o} \quad -1\frac{16}{35} \quad \text{o} \quad -1.4\dot{5}7142\dot{8}
\]
h.
\[
\frac{18}{11} \cdot\left(\frac{3}{4}-\frac{5}{3}\right)^{2}+\sqrt{\left(\frac{5}{6}+\frac{5}{4}\right):\left(\frac{27}{5}-\frac{1}{15}\right)} = \frac{115}{18} \quad \text{o} \quad 6\frac{7}{18} \quad \text{o} \quad 6.3\dot{8}
\]
i.
\[
\sqrt[3]{\frac{18}{21}} \cdot \sqrt[3]{-\frac{36}{49}}-\left(-\frac{1}{4}-\frac{1}{5}+\frac{1}{20}\right)^{-1} = -15
\]
j.
\[
\frac{8}{3} \cdot\left(\frac{4}{3}+2\right)^{-1}-\sqrt[3]{\frac{135}{32}}: \sqrt[3]{\frac{5}{4}} = \frac{115}{18} \quad \text{o} \quad 6\frac{7}{18} \quad \text{o} \quad 6.3\dot{8}
\]
Si necesitas más detalles sobre algún cálculo específico, házmelo saber.
Revisado y aprobado por el equipo de tutoría de UpStudy
Explicar
Simplifique esta solución