Question
upstudy study bank question image url

End Behavior: (9 points) \( \qquad \) \( \qquad \) \( \qquad \) \( \qquad \) \( \qquad \) \( \qquad \) \( \qquad \) \( \qquad \) \( \qquad \) \( \qquad \) (1 point each) End Behavior: (9 points) 5. Constant Monomial 6. Linear Binomial 7. Quadratic Monomial 8. Quadratic Trinomial 9. Cubic Binomial 10. Cubic Trinomial 11. Cubic Polynomial 12. Quartic Monomial 13. Quartic Trinomial 14. Quartic Polynomial A. \( 4 x^{4}-2 x^{2}+6 \) B. \( -x^{3}+16 x^{2}+2 x+16 \) C. \( 3 x^{2}+12 x+7 \) D. \( -5 x+8 \) E. \( 7 x^{3}-2 \) F. \( 14 x^{2} \) G. \( 5 x^{4}+4 x^{3}-8 x^{2}+5 x \) H. 8 1. \( 8 x^{3}-10 x+7 \) J. \( -x^{4} \)

Ask by Potter Norris. in the United States
Feb 03,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

Correspondencia entre polinomios y sus descripciones: 5. **Monomio Constante**: H. 8 6. **Binomio Lineal**: D. \(-5x + 8\) 7. **Monomio Cuadrático**: F. \(14x^{2}\) 8. **Trinomio Cuadrático**: C. \(3x^{2} + 12x + 7\) 9. **Binomio Cúbico**: E. \(7x^{3} - 2\) 10. **Trinomio Cúbico**: I. \(8x^{3} - 10x + 7\) 11. **Polinomio Cúbico**: B. \(-x^{3} + 16x^{2} + 2x + 16\) 12. **Monomio Cuártico**: J. \(-x^{4}\) 13. **Trinomio Cuártico**: A. \(4x^{4} - 2x^{2} + 6\) 14. **Polinomio Cuártico**: G. \(5x^{4} + 4x^{3} - 8x^{2} + 5x\)

Solution

Aquí está la correspondencia entre los polinomios y sus descripciones: 5. **Monomio Constante**:  **H.** 8 6. **Binomio Lineal**:  **D.** \(-5x + 8\) 7. **Monomio Cuadrático**:  **F.** \(14x^{2}\) 8. **Trinomio Cuadrático**:  **C.** \(3x^{2} + 12x + 7\) 9. **Binomio Cúbico**:  **E.** \(7x^{3} - 2\) 10. **Trinomio Cúbico**:  **I.** \(8x^{3} - 10x + 7\) 11. **Polinomio Cúbico**:  **B.** \(-x^{3} + 16x^{2} + 2x + 16\) 12. **Monomio Cuártico**:  **J.** \(-x^{4}\) 13. **Trinomio Cuártico**:  **A.** \(4x^{4} - 2x^{2} + 6\) 14. **Polinomio Cuártico**:  **G.** \(5x^{4} + 4x^{3} - 8x^{2} + 5x\)

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Beyond the Answer

When we talk about the end behavior of polynomials, we're diving into a fascinating world where we predict how functions behave as they move towards infinity! For even-degree polynomials, the ends will either rise or fall together, while odd-degree polynomials will head in opposite directions. So, as \(x\) approaches infinity or negative infinity, we can confidently say where the graph is headed! For real-world applications, understanding end behavior can help in economics and engineering! For instance, if you're modeling the trajectory of a flying vehicle or analyzing a company's profit over time, grasping how the functions behave at the extremes gives insights into longevity and sustainability—making those graphs not just pretty pictures, but practical tools for decision-making.

Related Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy