15 In \( \triangle P Q R, P Q Q R=84^{\circ}, Q \widehat{P} R=43^{\circ} \) and \( I P Q /=5 \mathrm{~cm} \). Find \( / Q R / \) in cm, correct to 1 decimal place. (WASSCE)
Real Tutor Solution
Answer
Solution
Reviewed and approved by the UpStudy tutoring team
Mind Expander
To find \( QR \) in triangle \( PQR \) with the given angles and side length, we can use the Law of Sines. First, we find the missing angle \( R \) using the fact that the sum of angles in a triangle is \( 180^\circ \). \[ R = 180^\circ - P - Q = 180^\circ - 84^\circ - 43^\circ = 53^\circ \] Now that we have all the angles: - \( \angle P = 84^\circ \) - \( \angle Q = 43^\circ \) - \( \angle R = 53^\circ \) Using the Law of Sines: \[ \frac{PQ}{\sin R} = \frac{QR}{\sin P} \] Substituting the known values: \[ \frac{5 \text{ cm}}{\sin(53^\circ)} = \frac{QR}{\sin(84^\circ)} \] To find \( QR \): \[ QR = \frac{5 \cdot \sin(84^\circ)}{\sin(53^\circ)} \] Calculating the sine values: - \( \sin(84^\circ) \approx 0.998 \) - \( \sin(53^\circ) \approx 0.798 \) Substituting these values: \[ QR \approx \frac{5 \cdot 0.998}{0.798} \approx \frac{4.99}{0.798} \approx 6.24 \text{ cm} \] Therefore, \( QR \approx 6.2 \text{ cm} \) when rounded to 1 decimal place.