Question
upstudy study bank question image url

\( \begin{array}{ll}4-5 x^{2}+4=0 & \text { b) } x^{4}-13 x^{2}+36= \\ 4-29 x^{2}+100=0 & \text { d) } x^{4}-8 x^{2}-9=0 \\ 4 x^{2}+4=0 & \text { f) } x^{4}+4 x^{2}+3=0\end{array} \)

Ask by Gibson Franklin. in El Salvador
Jan 24,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

Las soluciones para las ecuaciones son: a) \( x = \pm \frac{2\sqrt{10}}{5} \) b) \( x = \pm 3 \) y \( x = \pm 2 \) d) \( x = \pm 3 \) y \( x = \pm i \) e) \( x = \pm i \) f) \( x = \pm i \) y \( x = \pm i\sqrt{3} \)

Solution

Claro, resolveremos cada una de las ecuaciones proporcionadas paso a paso en español. ### a) \(4 - 5x^{2} + 4 = 0\) **Paso 1:** Simplificar la ecuación. \[ 4 + 4 - 5x^{2} = 0 \implies 8 - 5x^{2} = 0 \] **Paso 2:** Aislar \(x^{2}\). \[ -5x^{2} = -8 \implies x^{2} = \frac{8}{5} \] **Paso 3:** Resolver para \(x\). \[ x = \pm \sqrt{\frac{8}{5}} = \pm \frac{2\sqrt{10}}{5} \] --- ### b) \(x^{4} - 13x^{2} + 36 = 0\) **Paso 1:** Realizar un cambio de variable: \(y = x^{2}\). La ecuación se convierte en: \[ y^{2} - 13y + 36 = 0 \] **Paso 2:** Resolver la ecuación cuadrática para \(y\). \[ y = \frac{13 \pm \sqrt{13^{2} - 4 \cdot 1 \cdot 36}}{2} = \frac{13 \pm \sqrt{169 - 144}}{2} = \frac{13 \pm 5}{2} \] \[ y = 9 \quad \text{o} \quad y = 4 \] **Paso 3:** Revertir el cambio de variable y resolver para \(x\). - Para \(y = 9\): \[ x^{2} = 9 \implies x = \pm 3 \] - Para \(y = 4\): \[ x^{2} = 4 \implies x = \pm 2 \] **Soluciones:** \(x = \pm 3\) y \(x = \pm 2\). --- ### d) \(x^{4} - 8x^{2} - 9 = 0\) **Paso 1:** Cambiar la variable: \(y = x^{2}\). \[ y^{2} - 8y - 9 = 0 \] **Paso 2:** Resolver la ecuación cuadrática para \(y\). \[ y = \frac{8 \pm \sqrt{64 + 36}}{2} = \frac{8 \pm \sqrt{100}}{2} = \frac{8 \pm 10}{2} \] \[ y = 9 \quad \text{o} \quad y = -1 \] **Paso 3:** Resolver para \(x\). - Para \(y = 9\): \[ x^{2} = 9 \implies x = \pm 3 \] - Para \(y = -1\): \[ x^{2} = -1 \implies x = \pm i \] **Soluciones:** \(x = \pm 3\) y \(x = \pm i\). --- ### e) \(4x^{2} + 4 = 0\) **Paso 1:** Aislar \(x^{2}\). \[ 4x^{2} = -4 \implies x^{2} = -1 \] **Paso 2:** Resolver para \(x\). \[ x = \pm i \] **Soluciones:** \(x = \pm i\). --- ### f) \(x^{4} + 4x^{2} + 3 = 0\) **Paso 1:** Cambiar la variable: \(y = x^{2}\). \[ y^{2} + 4y + 3 = 0 \] **Paso 2:** Resolver la ecuación cuadrática para \(y\). \[ y = \frac{-4 \pm \sqrt{16 - 12}}{2} = \frac{-4 \pm 2}{2} \] \[ y = -1 \quad \text{o} \quad y = -3 \] **Paso 3:** Resolver para \(x\). - Para \(y = -1\): \[ x^{2} = -1 \implies x = \pm i \] - Para \(y = -3\): \[ x^{2} = -3 \implies x = \pm i\sqrt{3} \] **Soluciones:** \(x = \pm i\) y \(x = \pm i\sqrt{3}\). --- Espero que estas soluciones hayan sido claras y útiles. Si tienes alguna otra pregunta, no dudes en consultarme.

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Mind Expander

To solve the equation \(4 - 5x^{2} + 4 = 0\), first simplify it: \(8 - 5x^{2} = 0\), which leads to \(5x^{2} = 8\) or \(x^{2} = \frac{8}{5}\). Thus, \(x = \pm\sqrt{\frac{8}{5}} = \pm\frac{2\sqrt{2}}{\sqrt{5}}\). For the equation \(x^{4} - 13x^{2} + 36 = 0\), let \(y = x^{2}\). This converts the equation into a quadratic: \(y^{2} - 13y + 36 = 0\). Factoring gives \((y - 9)(y - 4) = 0\), yielding \(y = 9\) or \(y = 4\), and thus, \(x^{2} = 9 \Rightarrow x = \pm 3\) and \(x^{2} = 4 \Rightarrow x = \pm 2\). Now, let’s explore the beauty of equations! Quadratics might look daunting at first, but they open up a realm of possibilities, just like a choose-your-own-adventure book where each pathway leads to unique solutions. Ever wondered about the practical applications of these equations? Well, they're not just numbers on a page! Engineers and architects rely on quadratic formulas every day to design stable structures and predict how forces will act on different materials, ensuring our buildings and bridges can withstand the tests of time and nature.

Related Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy