Show that: \( \begin{array}{ll}\text { (a) } 5 \cdot 2^{x}-2^{x+2}=2^{x} & \text { (b) } 9^{x}+3^{2 x+1}=43^{x x} \\ \text { (c) } 2^{2 x-1}+4^{x+1}=2^{x x}\left(\frac{9}{2}\right) & \text { (d) } 2^{x+3}-2^{x+2}=2^{x+2} \\ \text { (e) } 2.10^{x}-5^{x+1} \cdot 2^{x}=-3.10^{x} & \text { (f) } 4.3^{1-x}+3^{2-x}=\frac{21}{3^{x}} \\ \text { Simplify the following: } & \end{array} \)
Real Tutor Solution
Answer
Solution
Sign in to Unlock Answers for Free!
A Learning Platform Trusted by Millions of Real Students and Teachers.
Reviewed and approved by the UpStudy tutoring team
The Deep Dive
To show these equations, let's simplify each one step by step. **(a)** We start with the equation \( 5 \cdot 2^{x} - 2^{x+2} = 2^{x} \). Rewriting \( 2^{x+2} \) as \( 4 \cdot 2^{x} \) gives us: \[ 5 \cdot 2^{x} - 4 \cdot 2^{x} = 2^{x} \] This simplifies to \( (5-4) \cdot 2^{x} = 2^{x} \), which results in \( 2^{x} = 2^{x} \), confirming that the equation holds. **(b)** For the equation \( 9^{x} + 3^{2x+1} = 43^{xx} \), we will first rewrite \( 9^x \) as \( (3^2)^x = 3^{2x} \) and simplify: \[ 3^{2x} + 3^{2x+1} = 43^{xx} \] This can also be expressed as \( 3^{2x} + 3 \cdot 3^{2x} = (1 + 3) \cdot 3^{2x} = 4 \cdot 3^{2x} = 43^{xx} \). Since further simplifications depend on \( x \), this demonstrates how each variable interacts in the equation. **(c)** For \( 2^{2x - 1} + 4^{x + 1} = 2^{xx}(\frac{9}{2})\), we can rewrite \( 4^{x+1} \) as \( 2^{2(x+1)} = 2^{2x + 2} \): Combining terms gives us: \[ 2^{2x - 1} + 2^{2x + 2} = 2^{2x - 1} + 2^{2x} \cdot 4 = 2^{2x - 1} + 4 \cdot 2^{2x} \] This allows us to combine into a single base of \( 2^{2x-1}(1 + 4\cdot 2) = 2^{2x - 1} \cdot 9 \), matching \( 2^{xx}(\frac{9}{2}) \). **(d)** The equation \( 2^{x + 3} - 2^{x + 2} = 2^{x + 2} \) can be manipulated: Using \( 2^{x + 3} = 2^{x + 2} \cdot 2 \): \[ 2 \cdot 2^{x + 2} - 2^{x + 2} = 2^{x + 2} \], which becomes \( (2 - 1) \cdot 2^{x + 2} = 2^{x + 2} \), verifying the equation holds true. **(e)** In the equation \( 2 \cdot 10^{x} - 5^{x + 1} \cdot 2^{x} = -3 \cdot 10^{x} \), break down terms: Substituting \( 5^{x + 1} = 5 \cdot 5^x \): We get \( 2 \cdot 10^{x} - 5 \cdot 5^{x} \cdot 2^{x} = -3 \cdot 10^{x} \). Transform \( 10^{x} = 2^{x} \cdot 5^{x} \), leading us to rearranging and verifying \( 2 = 5 - 3 \), thus confirming the underlying structure maintains equality. **(f)** For the last equation \( 4 \cdot 3^{1 - x} + 3^{2 - x} = \frac{21}{3^{x}} \), we can rewrite \( 3^{2 - x} \) as \( \frac{9}{3^{x}} \): Thus, we group terms to get \( \frac{4 \cdot 3 + 9}{3^{x}} = \frac{21}{3^{x}} \) or \( \frac{12 + 9}{3^{x}} = \frac{21}{3^{x}} \). Since both sides match, we confirm the equality is valid. Each of these transformations and applications strictly maintains the integrity