Question
upstudy study bank question image url

\( 3 \sqrt[ 1 ] { 54 x } + 4 \sqrt { 75 x } - 6 \sqrt[ 6 ] { 256 x ^ { 2 } } - 8 \sqrt[ 6 ] { 27 x ^ { 3 } } + 5 \sqrt[ 12 ] { 16 x ^ { 4 } } - 2 \sqrt { 108 x } \)

Ask by Schmidt Wells. in Italy
Jan 24,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

L'espressione semplificata è: \[ 162\,x - 7\,\sqrt[3]{2x} \]

Solution

L'espressione semplificata è: \[ 162\,x - 7\,\sqrt[3]{2x} \] **Passaggi di semplificazione:** 1. **Termine 1:** \[ 3 \sqrt[1]{54x} = 3 \times 54x = 162x \] 2. **Termine 2:** \[ 4 \sqrt{75x} = 4 \sqrt{25 \times 3x} = 4 \times 5 \sqrt{3x} = 20 \sqrt{3x} \] 3. **Termine 3:** \[ -6 \sqrt[6]{256x^2} = -6 \times 2 \sqrt[3]{2x} = -12 \sqrt[3]{2x} \] 4. **Termine 4:** \[ -8 \sqrt[6]{27x^3} = -8 \sqrt{3x} \] 5. **Termine 5:** \[ 5 \sqrt[12]{16x^4} = 5 \sqrt[3]{2x} \] 6. **Termine 6:** \[ -2 \sqrt{108x} = -2 \times 6 \sqrt{3x} = -12 \sqrt{3x} \] **Combinando i termini simili:** - **Termini con \(\sqrt{3x}\):** \[ 20 \sqrt{3x} - 8 \sqrt{3x} - 12 \sqrt{3x} = 0 \] - **Termini con \(\sqrt[3]{2x}\):** \[ -12 \sqrt[3]{2x} + 5 \sqrt[3]{2x} = -7 \sqrt[3]{2x} \] **Risultato finale:** \[ 162\,x - 7\,\sqrt[3]{2x} \]

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Mind Expander

To simplify the expression, let's break it down step by step: 1. **Convert all radicals to their simplest form:** - \(3 \sqrt[1]{54x} = 3(54x) = 162x\) - \(4 \sqrt{75x} = 4 \cdot \sqrt{75} \cdot \sqrt{x} = 4 \cdot 5\sqrt{3} \cdot \sqrt{x} = 20\sqrt{3x}\) - \(6 \sqrt[6]{256x^2} = 6 \cdot \sqrt[6]{256} \cdot \sqrt[6]{x^2} = 6 \cdot 4 \cdot x^{1/3} = 24x^{1/3}\) - \(8 \sqrt[6]{27x^3} = 8 \cdot \sqrt[6]{27} \cdot \sqrt[6]{x^3} = 8 \cdot 3^{1/2} \cdot x^{1/2} = 24\sqrt{3}x^{1/2}\) - \(5 \sqrt[12]{16x^4} = 5 \cdot \sqrt[12]{16} \cdot \sqrt[12]{x^4} = 5 \cdot 2^{4/12} \cdot x^{1/3} = 5 \cdot 2^{1/3} \cdot x^{1/3}\) - \(2 \sqrt{108x} = 2 \cdot \sqrt{108} \cdot \sqrt{x} = 2 \cdot 6\sqrt{3} \cdot \sqrt{x} = 12\sqrt{3x}\) 2. **Substituting back into the expression:** \[ 162x + 20\sqrt{3x} - 24x^{1/3} - 24\sqrt{3}x^{1/2} + 5 \cdot 2^{1/3} x^{1/3} - 12\sqrt{3x} \] 3. **Combine like terms:** - Combine \(20\sqrt{3x}\) and \(-12\sqrt{3x}\) to get \(8\sqrt{3x}\). - Combine \( -24x^{1/3} + 5 \cdot 2^{1/3}x^{1/3} = (-24 + 5 \cdot 2^{1/3})x^{1/3} \). 4. **Final simplified expression:** \[ 162x + 8\sqrt{3x} + (-24 + 5 \cdot 2^{1/3}) x^{1/3} - 24\sqrt{3}x^{1/2} \] This results in a cleaner expression, allowing you to see the components more clearly and work with them in any potential applications or further simplifications!

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy