Pregunta

1. (a) Rationalize the denominator of each of the following: (i) \( \frac{2 \sqrt{3}-\sqrt{2}}{4 \sqrt{3}} \) (ii) \( \frac{x}{x+\sqrt{y}} \) (iii) \( \frac{x-\sqrt{x^{2}-9}}{x+\sqrt{x^{2}-9}} \) (v) \[ \frac{1}{(\sqrt{2}+1)(\sqrt{3}-1)} \] (vi) \( \frac{5}{3-2 \sqrt{3}} \) (b) Rationalize the numerator in each of the following: (i) \( \frac{\sqrt{5+h}-3}{h} \) (ii) \( \frac{\sqrt{3}+\sqrt{5}}{7} \) (iii) \( \sqrt{x^{2}+1}-x \)

Ask by Malone Dickson. in Zambia
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

Here are the rationalized forms: 1. **Rationalized Denominators:** - (i) \( \frac{6 - \sqrt{6}}{12} \) - (ii) \( \frac{x^{2} - x\sqrt{y}}{x^{2} - y} \) - (iii) \( \frac{2x^{2} - 2\sqrt{x^{2} - 9} \times x - 9}{9} \) - (iv) \( \frac{1}{\sqrt{6} - \sqrt{2} + \sqrt{3} - 1} \) - (v) \( -\frac{15 + 10\sqrt{3}}{3} \) 2. **Rationalized Numerators:** - (i) \( \frac{h - 4}{h(\sqrt{5 + h} + 3)} \) - (ii) \( \frac{-2}{7(\sqrt{3} - \sqrt{5})} \) - (iii) \( \frac{1}{\sqrt{x^{2} + 1} + x} \)

Solución

Simplify the expression by following steps: - step0: Solution: \(\sqrt{x^{2}+1}-x\) Calculate or simplify the expression \( (\sqrt(3)+\sqrt(5))/7 \). Calculate the value by following steps: - step0: Calculate: \(\frac{\left(\sqrt{3}+\sqrt{5}\right)}{7}\) - step1: Remove the parentheses: \(\frac{\sqrt{3}+\sqrt{5}}{7}\) Calculate or simplify the expression \( (\sqrt(5+h)-3)/h \). Simplify the expression by following steps: - step0: Solution: \(\frac{\left(\sqrt{5+h}-3\right)}{h}\) - step1: Remove the parentheses: \(\frac{\sqrt{5+h}-3}{h}\) Calculate or simplify the expression \( x/(x+\sqrt(y)) \). Simplify the expression by following steps: - step0: Solution: \(\frac{x}{\left(x+\sqrt{y}\right)}\) - step1: Remove the parentheses: \(\frac{x}{x+\sqrt{y}}\) - step2: Simplify: \(\frac{\left(x-\sqrt{y}\right)x}{x^{2}-y}\) - step3: Multiply the terms: \(\frac{x^{2}-x\sqrt{y}}{x^{2}-y}\) Calculate or simplify the expression \( 5/(3-2*\sqrt(3)) \). Calculate the value by following steps: - step0: Calculate: \(\frac{5}{\left(3-2\sqrt{3}\right)}\) - step1: Remove the parentheses: \(\frac{5}{3-2\sqrt{3}}\) - step2: Multiply by the Conjugate: \(\frac{5\left(3+2\sqrt{3}\right)}{\left(3-2\sqrt{3}\right)\left(3+2\sqrt{3}\right)}\) - step3: Multiply the numbers: \(\frac{5\left(3+2\sqrt{3}\right)}{-3}\) - step4: Multiply the numbers: \(\frac{15+10\sqrt{3}}{-3}\) - step5: Calculate: \(-\frac{15+10\sqrt{3}}{3}\) Calculate or simplify the expression \( (2*\sqrt(3)-\sqrt(2))/(4*\sqrt(3)) \). Calculate the value by following steps: - step0: Calculate: \(\frac{\left(2\sqrt{3}-\sqrt{2}\right)}{\left(4\sqrt{3}\right)}\) - step1: Remove the parentheses: \(\frac{2\sqrt{3}-\sqrt{2}}{4\sqrt{3}}\) - step2: Multiply by the Conjugate: \(\frac{\left(2\sqrt{3}-\sqrt{2}\right)\sqrt{3}}{4\sqrt{3}\times \sqrt{3}}\) - step3: Multiply the numbers: \(\frac{6-\sqrt{6}}{4\sqrt{3}\times \sqrt{3}}\) - step4: Multiply the numbers: \(\frac{6-\sqrt{6}}{12}\) Calculate or simplify the expression \( 1/((\sqrt(2)+1)*(\sqrt(3)-1)) \). Calculate the value by following steps: - step0: Calculate: \(\frac{1}{\left(\left(\sqrt{2}+1\right)\left(\sqrt{3}-1\right)\right)}\) - step1: Remove the parentheses: \(\frac{1}{\left(\sqrt{2}+1\right)\left(\sqrt{3}-1\right)}\) - step2: Multiply the numbers: \(\frac{1}{\sqrt{6}-\sqrt{2}+\sqrt{3}-1}\) Calculate or simplify the expression \( (x-\sqrt(x^2-9))/(x+\sqrt(x^2-9)) \). Simplify the expression by following steps: - step0: Solution: \(\frac{\left(x-\sqrt{x^{2}-9}\right)}{\left(x+\sqrt{x^{2}-9}\right)}\) - step1: Remove the parentheses: \(\frac{x-\sqrt{x^{2}-9}}{x+\sqrt{x^{2}-9}}\) - step2: Simplify: \(\frac{2x^{2}-2\sqrt{x^{2}-9}\times x-9}{9}\) Let's rationalize the denominators and numerators step by step for the given expressions. ### (a) Rationalizing the Denominator #### (i) \( \frac{2 \sqrt{3}-\sqrt{2}}{4 \sqrt{3}} \) To rationalize the denominator, we can simplify the expression: \[ \frac{2 \sqrt{3}-\sqrt{2}}{4 \sqrt{3}} = \frac{6 - \sqrt{6}}{12} \] #### (ii) \( \frac{x}{x+\sqrt{y}} \) To rationalize the denominator, multiply the numerator and denominator by the conjugate of the denominator: \[ \frac{x}{x+\sqrt{y}} \cdot \frac{x-\sqrt{y}}{x-\sqrt{y}} = \frac{x^{2}-x\sqrt{y}}{x^{2}-y} \] #### (iii) \( \frac{x-\sqrt{x^{2}-9}}{x+\sqrt{x^{2}-9}} \) Multiply by the conjugate: \[ \frac{x-\sqrt{x^{2}-9}}{x+\sqrt{x^{2}-9}} \cdot \frac{x-\sqrt{x^{2}-9}}{x-\sqrt{x^{2}-9}} = \frac{2x^{2}-2\sqrt{x^{2}-9}\times x-9}{9} \] #### (iv) \( \frac{1}{(\sqrt{2}+1)(\sqrt{3}-1)} \) Multiply by the conjugate of the denominator: \[ \frac{1}{(\sqrt{2}+1)(\sqrt{3}-1)} = \frac{1}{\sqrt{6}-\sqrt{2}+\sqrt{3}-1} \] #### (v) \( \frac{5}{3-2 \sqrt{3}} \) Multiply by the conjugate: \[ \frac{5}{3-2 \sqrt{3}} \cdot \frac{3+2\sqrt{3}}{3+2\sqrt{3}} = -\frac{15+10\sqrt{3}}{3} \] ### (b) Rationalizing the Numerator #### (i) \( \frac{\sqrt{5+h}-3}{h} \) This expression is already in a suitable form for rationalization, but we can multiply by the conjugate: \[ \frac{\sqrt{5+h}-3}{h} \cdot \frac{\sqrt{5+h}+3}{\sqrt{5+h}+3} = \frac{5+h-9}{h(\sqrt{5+h}+3)} = \frac{h-4}{h(\sqrt{5+h}+3)} \] #### (ii) \( \frac{\sqrt{3}+\sqrt{5}}{7} \) Multiply by the conjugate: \[ \frac{\sqrt{3}+\sqrt{5}}{7} \cdot \frac{\sqrt{3}-\sqrt{5}}{\sqrt{3}-\sqrt{5}} = \frac{3-5}{7(\sqrt{3}-\sqrt{5})} = \frac{-2}{7(\sqrt{3}-\sqrt{5})} \] #### (iii) \( \sqrt{x^{2}+1}-x \) Multiply by the conjugate: \[ \sqrt{x^{2}+1}-x \cdot \frac{\sqrt{x^{2}+1}+x}{\sqrt{x^{2}+1}+x} = \frac{(x^{2}+1)-x^{2}}{\sqrt{x^{2}+1}+x} = \frac{1}{\sqrt{x^{2}+1}+x} \] ### Summary of Results 1. **Rationalized Denominators:** - (i) \( \frac{6-\sqrt{6}}{12} \) - (ii) \( \frac{x^{2}-x\sqrt{y}}{x^{2}-y} \) - (iii) \( \frac{2x^{2}-2\sqrt{x^{2}-9}\times x-9}{9} \) - (iv) \( \frac{1}{\sqrt{6}-\sqrt{2}+\sqrt{3}-1} \) - (v) \( -\frac{15+10\sqrt{3}}{3} \) 2. **Rationalized Numerators:** - (i) \( \frac{h-4}{h(\sqrt{5+h}+3)} \) - (ii) \( \frac{-2}{7(\sqrt{3}-\sqrt{5})} \) - (iii) \( \frac{1}{\sqrt{x^{2}+1}+x} \)

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

To start off, rationalizing the denominator is a crucial algebraic technique that simplifies expressions, allowing the denominator to achieve a more manageable form. This process gets rid of square roots or other irrational numbers in the denominator, thereby making calculations easier and cleaner. For instance, in the expression \( \frac{2 \sqrt{3}-\sqrt{2}}{4 \sqrt{3}} \), multiplying by \( \frac{\sqrt{3}}{\sqrt{3}} \) helps eliminate the square root in the denominator. Now, onto your exciting journey through mathematics! The real-world application of rationalizing expressions is especially prevalent in fields like engineering and physics, where precise calculations are essential. For example, when dealing with measuring angles or calculating trajectories, engineers often need to simplify complex expressions. Effectively rationalizing allows them to keep computations clear, ensuring that they can communicate findings without getting bogged down by cumbersome numbers and roots. So, next time you simplify an expression, think of all the engineers and scientists thanking you for your math prowess!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad