Responder
Here are the rationalized forms:
1. **Rationalized Denominators:**
- (i) \( \frac{6 - \sqrt{6}}{12} \)
- (ii) \( \frac{x^{2} - x\sqrt{y}}{x^{2} - y} \)
- (iii) \( \frac{2x^{2} - 2\sqrt{x^{2} - 9} \times x - 9}{9} \)
- (iv) \( \frac{1}{\sqrt{6} - \sqrt{2} + \sqrt{3} - 1} \)
- (v) \( -\frac{15 + 10\sqrt{3}}{3} \)
2. **Rationalized Numerators:**
- (i) \( \frac{h - 4}{h(\sqrt{5 + h} + 3)} \)
- (ii) \( \frac{-2}{7(\sqrt{3} - \sqrt{5})} \)
- (iii) \( \frac{1}{\sqrt{x^{2} + 1} + x} \)
Solución
Simplify the expression by following steps:
- step0: Solution:
\(\sqrt{x^{2}+1}-x\)
Calculate or simplify the expression \( (\sqrt(3)+\sqrt(5))/7 \).
Calculate the value by following steps:
- step0: Calculate:
\(\frac{\left(\sqrt{3}+\sqrt{5}\right)}{7}\)
- step1: Remove the parentheses:
\(\frac{\sqrt{3}+\sqrt{5}}{7}\)
Calculate or simplify the expression \( (\sqrt(5+h)-3)/h \).
Simplify the expression by following steps:
- step0: Solution:
\(\frac{\left(\sqrt{5+h}-3\right)}{h}\)
- step1: Remove the parentheses:
\(\frac{\sqrt{5+h}-3}{h}\)
Calculate or simplify the expression \( x/(x+\sqrt(y)) \).
Simplify the expression by following steps:
- step0: Solution:
\(\frac{x}{\left(x+\sqrt{y}\right)}\)
- step1: Remove the parentheses:
\(\frac{x}{x+\sqrt{y}}\)
- step2: Simplify:
\(\frac{\left(x-\sqrt{y}\right)x}{x^{2}-y}\)
- step3: Multiply the terms:
\(\frac{x^{2}-x\sqrt{y}}{x^{2}-y}\)
Calculate or simplify the expression \( 5/(3-2*\sqrt(3)) \).
Calculate the value by following steps:
- step0: Calculate:
\(\frac{5}{\left(3-2\sqrt{3}\right)}\)
- step1: Remove the parentheses:
\(\frac{5}{3-2\sqrt{3}}\)
- step2: Multiply by the Conjugate:
\(\frac{5\left(3+2\sqrt{3}\right)}{\left(3-2\sqrt{3}\right)\left(3+2\sqrt{3}\right)}\)
- step3: Multiply the numbers:
\(\frac{5\left(3+2\sqrt{3}\right)}{-3}\)
- step4: Multiply the numbers:
\(\frac{15+10\sqrt{3}}{-3}\)
- step5: Calculate:
\(-\frac{15+10\sqrt{3}}{3}\)
Calculate or simplify the expression \( (2*\sqrt(3)-\sqrt(2))/(4*\sqrt(3)) \).
Calculate the value by following steps:
- step0: Calculate:
\(\frac{\left(2\sqrt{3}-\sqrt{2}\right)}{\left(4\sqrt{3}\right)}\)
- step1: Remove the parentheses:
\(\frac{2\sqrt{3}-\sqrt{2}}{4\sqrt{3}}\)
- step2: Multiply by the Conjugate:
\(\frac{\left(2\sqrt{3}-\sqrt{2}\right)\sqrt{3}}{4\sqrt{3}\times \sqrt{3}}\)
- step3: Multiply the numbers:
\(\frac{6-\sqrt{6}}{4\sqrt{3}\times \sqrt{3}}\)
- step4: Multiply the numbers:
\(\frac{6-\sqrt{6}}{12}\)
Calculate or simplify the expression \( 1/((\sqrt(2)+1)*(\sqrt(3)-1)) \).
Calculate the value by following steps:
- step0: Calculate:
\(\frac{1}{\left(\left(\sqrt{2}+1\right)\left(\sqrt{3}-1\right)\right)}\)
- step1: Remove the parentheses:
\(\frac{1}{\left(\sqrt{2}+1\right)\left(\sqrt{3}-1\right)}\)
- step2: Multiply the numbers:
\(\frac{1}{\sqrt{6}-\sqrt{2}+\sqrt{3}-1}\)
Calculate or simplify the expression \( (x-\sqrt(x^2-9))/(x+\sqrt(x^2-9)) \).
Simplify the expression by following steps:
- step0: Solution:
\(\frac{\left(x-\sqrt{x^{2}-9}\right)}{\left(x+\sqrt{x^{2}-9}\right)}\)
- step1: Remove the parentheses:
\(\frac{x-\sqrt{x^{2}-9}}{x+\sqrt{x^{2}-9}}\)
- step2: Simplify:
\(\frac{2x^{2}-2\sqrt{x^{2}-9}\times x-9}{9}\)
Let's rationalize the denominators and numerators step by step for the given expressions.
### (a) Rationalizing the Denominator
#### (i) \( \frac{2 \sqrt{3}-\sqrt{2}}{4 \sqrt{3}} \)
To rationalize the denominator, we can simplify the expression:
\[
\frac{2 \sqrt{3}-\sqrt{2}}{4 \sqrt{3}} = \frac{6 - \sqrt{6}}{12}
\]
#### (ii) \( \frac{x}{x+\sqrt{y}} \)
To rationalize the denominator, multiply the numerator and denominator by the conjugate of the denominator:
\[
\frac{x}{x+\sqrt{y}} \cdot \frac{x-\sqrt{y}}{x-\sqrt{y}} = \frac{x^{2}-x\sqrt{y}}{x^{2}-y}
\]
#### (iii) \( \frac{x-\sqrt{x^{2}-9}}{x+\sqrt{x^{2}-9}} \)
Multiply by the conjugate:
\[
\frac{x-\sqrt{x^{2}-9}}{x+\sqrt{x^{2}-9}} \cdot \frac{x-\sqrt{x^{2}-9}}{x-\sqrt{x^{2}-9}} = \frac{2x^{2}-2\sqrt{x^{2}-9}\times x-9}{9}
\]
#### (iv) \( \frac{1}{(\sqrt{2}+1)(\sqrt{3}-1)} \)
Multiply by the conjugate of the denominator:
\[
\frac{1}{(\sqrt{2}+1)(\sqrt{3}-1)} = \frac{1}{\sqrt{6}-\sqrt{2}+\sqrt{3}-1}
\]
#### (v) \( \frac{5}{3-2 \sqrt{3}} \)
Multiply by the conjugate:
\[
\frac{5}{3-2 \sqrt{3}} \cdot \frac{3+2\sqrt{3}}{3+2\sqrt{3}} = -\frac{15+10\sqrt{3}}{3}
\]
### (b) Rationalizing the Numerator
#### (i) \( \frac{\sqrt{5+h}-3}{h} \)
This expression is already in a suitable form for rationalization, but we can multiply by the conjugate:
\[
\frac{\sqrt{5+h}-3}{h} \cdot \frac{\sqrt{5+h}+3}{\sqrt{5+h}+3} = \frac{5+h-9}{h(\sqrt{5+h}+3)} = \frac{h-4}{h(\sqrt{5+h}+3)}
\]
#### (ii) \( \frac{\sqrt{3}+\sqrt{5}}{7} \)
Multiply by the conjugate:
\[
\frac{\sqrt{3}+\sqrt{5}}{7} \cdot \frac{\sqrt{3}-\sqrt{5}}{\sqrt{3}-\sqrt{5}} = \frac{3-5}{7(\sqrt{3}-\sqrt{5})} = \frac{-2}{7(\sqrt{3}-\sqrt{5})}
\]
#### (iii) \( \sqrt{x^{2}+1}-x \)
Multiply by the conjugate:
\[
\sqrt{x^{2}+1}-x \cdot \frac{\sqrt{x^{2}+1}+x}{\sqrt{x^{2}+1}+x} = \frac{(x^{2}+1)-x^{2}}{\sqrt{x^{2}+1}+x} = \frac{1}{\sqrt{x^{2}+1}+x}
\]
### Summary of Results
1. **Rationalized Denominators:**
- (i) \( \frac{6-\sqrt{6}}{12} \)
- (ii) \( \frac{x^{2}-x\sqrt{y}}{x^{2}-y} \)
- (iii) \( \frac{2x^{2}-2\sqrt{x^{2}-9}\times x-9}{9} \)
- (iv) \( \frac{1}{\sqrt{6}-\sqrt{2}+\sqrt{3}-1} \)
- (v) \( -\frac{15+10\sqrt{3}}{3} \)
2. **Rationalized Numerators:**
- (i) \( \frac{h-4}{h(\sqrt{5+h}+3)} \)
- (ii) \( \frac{-2}{7(\sqrt{3}-\sqrt{5})} \)
- (iii) \( \frac{1}{\sqrt{x^{2}+1}+x} \)
Revisado y aprobado por el equipo de tutoría de UpStudy
Explicar
Simplifique esta solución