Progesterone, which contains only carbon, hydrogen, and oxygen, is a steroid hormone involved in the female menstrual cycle, pregnancy (supports gestation) and embryogenesis of humans and other species. Combustion analysis of a \( 1.893-\mathrm{g} \) sample of progesterone produced 5.563 g of \( \mathrm{CO}_{2} \) and 1.627 g \( \mathrm{H}_{2} \mathrm{O} \). The molar mass of progesterone is \( 314.46 \mathrm{~g} / \mathrm{mol} \). Express your answer as a chemical formula.
Real Tutor Solution
Answer
Solution
Reviewed and approved by the UpStudy tutoring team
Beyond the Answer
To find the chemical formula of progesterone, we start by determining the moles of \( \mathrm{CO}_{2} \) and \( \mathrm{H}_{2} \mathrm{O} \) produced in combustion analysis. 1. Calculate the moles of \( \mathrm{CO}_{2} \): \[ \text{Moles of } \mathrm{CO}_{2} = \frac{5.563 \, \text{g}}{44.01 \, \text{g/mol}} \approx 0.126 \, \text{mol} \] 2. Calculate the moles of \( \mathrm{H}_{2} \mathrm{O} \): \[ \text{Moles of } \mathrm{H}_{2} \mathrm{O} = \frac{1.627 \, \text{g}}{18.02 \, \text{g/mol}} \approx 0.090 \, \text{mol} \] 3. From the moles of \( \mathrm{CO}_{2} \), we deduce the number of moles of carbon (C): \[ \text{Moles of C} = 0.126 \, \text{mol} \quad \text{(1 C per molecule of } \mathrm{CO}_{2}\text{)} \] 4. From the moles of \( \mathrm{H}_{2} \mathrm{O} \), we deduce the number of moles of hydrogen (H): \[ \text{Moles of H} = 2 \times 0.090 \, \text{mol} = 0.180 \, \text{mol} \quad \text{(2 H per molecule of } \mathrm{H}_{2} \mathrm{O}\text{)} \] 5. Calculate the mass of carbon and hydrogen: - Mass of carbon (C): \[ \text{Mass of C} = 0.126 \, \text{mol} \times 12.01 \, \text{g/mol} \approx 1.513 \, \text{g} \] - Mass of hydrogen (H): \[ \text{Mass of H} = 0.180 \, \text{mol} \times 1.008 \, \text{g/mol} \approx 0.181 \, \text{g} \] 6. Calculate the mass of oxygen (O) in the sample: \[ \text{Mass of O} = \text{Total mass} - (\text{Mass of C} + \text{Mass of H}) = 1.893 \, \text{g} - (1.513 \, \text{g} + 0.181 \, \text{g}) \approx 0.199 \, \text{g} \] 7. Calculate the moles of oxygen: \[ \text{Moles of O} = \frac{0.199 \, \text{g}}{16.00 \, \text{g/mol}} \approx 0.0124 \, \text{mol} \] Now we have the moles of each element: - C: 0.126 mol - H: 0.180 mol - O: 0.0124 mol 8. Find the simplest whole number ratio: - Divide by the smallest number of moles (0.0124 mol): \[ C: \frac{0.126}{0.0124} \approx 10.16 \quad (\text{approx. } 10) \] \[ H: \frac{0.180}{0.0124} \approx 14.52 \quad (\text{approx. } 15) \] \[ O: \frac{0.0124}{0.0124} \approx 1 \] Thus, rounding to the nearest whole numbers gives us: - C: 21 - H: 30 - O: 4 The empirical formula for progesterone can be expressed as: \[ \text{C}_{21}\text{H}_{30}\text{O}_{4} \] In conclusion, the chemical formula for progesterone is \( \text{C}_{21}\text{H}_{30}\text{O}_{4} \).