Question
upstudy study bank question image url

9 Un filo conduttore forma una spira quadrata di 10 cm di lato, ed è immerso in un campo magne- tico costante di \( 0,66 \mathrm{~T} \) diretto perpendicolarmen- te a esso. Il lato della spira viene aumentato del \( 75 \% \) e, a conseguenza della deformazione, si mi- sura una fem indotta di 89 mV . Calcola l'intervallo di tempo in cui è avvenuta la deformazione della spira.

Ask by Stuart Marshall. in Italy
Jan 24,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

L'intervallo di tempo della deformazione della spira è circa 0,15 secondi.

Solution

Sign in to Unlock Answers for Free!

A Learning Platform Trusted by Millions of Real Students and Teachers.

star-icon Unlock

Reviewed and approved by the UpStudy tutoring team

Bonus Knowledge

Per calcolare l'intervallo di tempo in cui è avvenuta la deformazione della spira, possiamo utilizzare la legge di Faraday dell'induzione elettromagnetica, che afferma che la forza elettromotiva (fem) indotta è uguale al tasso di cambio del flusso magnetico attraverso la spira. 1. L'area iniziale della spira è \(A_i = (10 \, \text{cm})^2 = 0.01 \, \text{m}^2\). 2. L'area finale dopo l'aumento del 75% del lato sarà \(l = 10 \, \text{cm} + 75\% \times 10 \, \text{cm} = 17.5 \, \text{cm} \). Quindi, l'area finale \(A_f = (0.175 \, \text{m})^2 = 0.030625 \, \text{m}^2\). 3. Il flusso magnetico iniziale è \(\Phi_i = B \times A_i = 0.66 \, \text{T} \times 0.01 \, \text{m}^2 = 0.0066 \, \text{Wb}\). 4. Il flusso magnetico finale è \(\Phi_f = B \times A_f = 0.66 \, \text{T} \times 0.030625 \, \text{m}^2 = 0.02019 \, \text{Wb}\). 5. La variazione del flusso è \(\Delta \Phi = \Phi_f - \Phi_i = 0.02019 \, \text{Wb} - 0.0066 \, \text{Wb} = 0.01359 \, \text{Wb}\). 6. Utilizzando la legge di Faraday, sappiamo che \( \text{fem} = -\frac{\Delta \Phi}{\Delta t}\), quindi possiamo isolare \(\Delta t\): \[ \Delta t = -\frac{\Delta \Phi}{\text{fem}} = -\frac{0.01359 \, \text{Wb}}{0.089 \, \text{V}} \approx 0.152 \, \text{s}. \] Quindi, l'intervallo di tempo in cui è avvenuta la deformazione della spira è circa \(0.152\) secondi.

Related Questions

Acceleration Problems: 1. Acceleration is the rate at which what changes? Velocity 2. What is the acceleration of a car moving in a straight-line path that travels at constant speed of \( 100 \mathrm{~km} / \mathrm{h} \) ? \[ a=0 \mathrm{~m} / \mathrm{s}^{2} \] 3. What is the acceleration of a car moving in a straight-line path that increases it speed from rest to \( 100 \mathrm{~km} / \mathrm{h} \) in 0.2 hrs ? \[ 0.0586 \mathrm{~m} / \mathrm{s}^{2} \] 4. Light travels in a straight line at a constant speed of \( 300,000 \mathrm{~km} / \mathrm{s} \). What would the acceleration of light 3 seconds later? \[ 0 \mathrm{~m} / \mathrm{s}^{2} \] 5. A dragster going at \( 15 \mathrm{~m} / \mathrm{s} \) north increases its velocity to \( 25 \mathrm{~m} / \mathrm{s} \) north in 4 seconds. What's its acceleration during that time interval? \[ 2.3 \mathrm{~m} / \mathrm{s}^{2} \] 6. A car going \( 30 \mathrm{~m} / \mathrm{s} \) undergoes an acceleration of \( 2 \mathrm{~m} / \mathrm{s}^{2} \) for 4 seconds. What is its final speed? \[ 38 \mathrm{~m} / \mathrm{s} \] 7. A man on a unicycle pedals for 2 seconds at a speed of \( 6 \mathrm{~m} / \mathrm{s} \) and then pedals another 2 seconds at a rate of \( 6 \mathrm{~m} / \mathrm{s} \). What is the acceleration of the cyclist? \[ 0 \mathrm{~m} / \mathrm{s}^{2} \] 8. If a Porsche accelerates at a rate of \( 25 \mathrm{~km} / \mathrm{h}^{*} \mathrm{~s} \) and goes from rest to \( 125 \mathrm{~km} / \mathrm{hr} \). How long did it take the car to reach its final speed? 5 seconas 9. If a car is traveling at \( 35 \mathrm{~m} / \mathrm{s} \) and the driver sees a deer and slams on her brakes to come to stop in 5 seconds, what is her rate of acceleration? \( -7 \mathrm{mi} \mathrm{s}^{2} \) 10. A rocket decelerates at a rate of \( 5 \mathrm{~m} / \mathrm{s}^{2} \). If the initial velocity of the rocket was \( 200 \mathrm{~m} / \mathrm{s} \), how fast would the rocket be traveling 20 seconds later? How long will it take before the rocket . comes to a stop? Uo seconde Acceleration Calculations
Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy