Question
upstudy study bank question image url

Expand and simplify: \( \begin{array}{llllll}\text { (1) } \quad 3 x(x+3) & \text { (2) } & -3 a\left(3 a^{3}-6 a^{2}+a\right) & (3) & (x+5)(x+2) \\ \text { (4) } \quad(x-5)(x-2) & (5) & (x+5)(x-2) & (4) & (x-5)(x+2) \\ \text { (7) } & (3 x-1)(2 x+3) & \text { (8) } & (7 m-2 n)(3 m+4 n) & \\ \text { (9) }\left(2 x^{4}-3 y^{2}\right)\left(3 x^{4}+2 y^{2}\right) & \text { (10) }\left(4 x^{4}+3 y^{5}\right)\left(2 x^{4}-4 y^{3}\right)\end{array} \)

Ask by Chambers Gray. in South Africa
Jan 23,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

Here are the expanded and simplified forms of the given expressions: 1. \( 3x^2 + 9x \) 2. \( -9a^4 + 18a^3 - 3a^2 \) 3. \( x^2 + 7x + 10 \) 4. \( x^2 - 7x + 10 \) 5. \( x^2 + 3x - 10 \) 6. \( x^2 - 3x - 10 \) 7. \( 6x^2 + 7x - 3 \) 8. \( 21m^2 + 22mn - 8n^2 \) 9. \( 6x^8 - 5x^4y^2 - 6y^4 \) 10. \( 8x^8 + 6x^4y^5 - 16x^4y^3 - 12y^8 \)

Solution

Certainly! Let's expand and simplify each of the given expressions step by step. --- ### **(1) \( 3x(x + 3) \)** **Expansion:** \[ 3x \cdot x + 3x \cdot 3 \] **Simplification:** \[ 3x^2 + 9x \] **Final Answer:** \[ 3x^2 + 9x \] --- ### **(2) \( -3a(3a^{3} - 6a^{2} + a) \)** **Expansion:** \[ -3a \cdot 3a^3 + (-3a) \cdot (-6a^2) + (-3a) \cdot a \] **Simplification:** \[ -9a^4 + 18a^3 - 3a^2 \] **Final Answer:** \[ -9a^4 + 18a^3 - 3a^2 \] --- ### **(3) \( (x + 5)(x + 2) \)** **Expansion (Using FOIL Method):** \[ x \cdot x + x \cdot 2 + 5 \cdot x + 5 \cdot 2 \] **Simplification:** \[ x^2 + 2x + 5x + 10 = x^2 + 7x + 10 \] **Final Answer:** \[ x^2 + 7x + 10 \] --- ### **(4) \( (x - 5)(x - 2) \)** **Expansion (Using FOIL Method):** \[ x \cdot x + x \cdot (-2) + (-5) \cdot x + (-5) \cdot (-2) \] **Simplification:** \[ x^2 - 2x - 5x + 10 = x^2 - 7x + 10 \] **Final Answer:** \[ x^2 - 7x + 10 \] --- ### **(5) \( (x + 5)(x - 2) \)** **Expansion (Using FOIL Method):** \[ x \cdot x + x \cdot (-2) + 5 \cdot x + 5 \cdot (-2) \] **Simplification:** \[ x^2 - 2x + 5x - 10 = x^2 + 3x - 10 \] **Final Answer:** \[ x^2 + 3x - 10 \] --- ### **(6) \( (x - 5)(x + 2) \)** **Expansion (Using FOIL Method):** \[ x \cdot x + x \cdot 2 + (-5) \cdot x + (-5) \cdot 2 \] **Simplification:** \[ x^2 + 2x - 5x - 10 = x^2 - 3x - 10 \] **Final Answer:** \[ x^2 - 3x - 10 \] --- ### **(7) \( (3x - 1)(2x + 3) \)** **Expansion:** \[ 3x \cdot 2x + 3x \cdot 3 + (-1) \cdot 2x + (-1) \cdot 3 \] **Simplification:** \[ 6x^2 + 9x - 2x - 3 = 6x^2 + 7x - 3 \] **Final Answer:** \[ 6x^2 + 7x - 3 \] --- ### **(8) \( (7m - 2n)(3m + 4n) \)** **Expansion:** \[ 7m \cdot 3m + 7m \cdot 4n + (-2n) \cdot 3m + (-2n) \cdot 4n \] **Simplification:** \[ 21m^2 + 28mn - 6mn - 8n^2 = 21m^2 + 22mn - 8n^2 \] **Final Answer:** \[ 21m^2 + 22mn - 8n^2 \] --- ### **(9) \( (2x^{4} - 3y^{2})(3x^{4} + 2y^{2}) \)** **Expansion:** \[ 2x^4 \cdot 3x^4 + 2x^4 \cdot 2y^2 + (-3y^2) \cdot 3x^4 + (-3y^2) \cdot 2y^2 \] **Simplification:** \[ 6x^8 + 4x^4y^2 - 9x^4y^2 - 6y^4 = 6x^8 - 5x^4y^2 - 6y^4 \] **Final Answer:** \[ 6x^8 - 5x^4y^2 - 6y^4 \] --- ### **(10) \( (4x^{4} + 3y^{5})(2x^{4} - 4y^{3}) \)** **Expansion:** \[ 4x^4 \cdot 2x^4 + 4x^4 \cdot (-4y^3) + 3y^5 \cdot 2x^4 + 3y^5 \cdot (-4y^3) \] **Simplification:** \[ 8x^8 - 16x^4y^3 + 6x^4y^5 - 12y^8 \] **Final Answer:** \[ 8x^8 + 6x^4y^5 - 16x^4y^3 - 12y^8 \] --- These expanded and simplified forms should help clarify each expression!

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Beyond the Answer

Let's expand and simplify each expression one by one! 1. For \(3x(x+3)\): \[ 3x(x + 3) = 3x^2 + 9x \] 2. For \(-3a(3a^3 - 6a^2 + a)\): \[ -3a(3a^3 - 6a^2 + a) = -9a^4 + 18a^3 - 3a^2 \] 3. For \((x+5)(x+2)\): \[ (x + 5)(x + 2) = x^2 + 2x + 5x + 10 = x^2 + 7x + 10 \] 4. For \((x-5)(x-2)\): \[ (x - 5)(x - 2) = x^2 - 2x - 5x + 10 = x^2 - 7x + 10 \] 5. For \((x+5)(x-2)\): \[ (x + 5)(x - 2) = x^2 - 2x + 5x - 10 = x^2 + 3x - 10 \] 6. For \((x-5)(x+2)\): \[ (x - 5)(x + 2) = x^2 + 2x - 5x - 10 = x^2 - 3x - 10 \] 7. For \((3x-1)(2x+3)\): \[ (3x - 1)(2x + 3) = 6x^2 + 9x - 2x - 3 = 6x^2 + 7x - 3 \] 8. For \((7m-2n)(3m+4n)\): \[ (7m - 2n)(3m + 4n) = 21m^2 + 28mn - 6mn - 8n^2 = 21m^2 + 22mn - 8n^2 \] 9. For \(\left(2x^4 - 3y^2\right)\left(3x^4 + 2y^2\right)\): \[ (2x^4 - 3y^2)(3x^4 + 2y^2) = 6x^8 + 4x^4y^2 - 9x^4y^2 - 6y^4 = 6x^8 - 5x^4y^2 - 6y^4 \] 10. For \(\left(4x^4 + 3y^5\right)\left(2x^4 - 4y^3\right)\): \[ (4x^4 + 3y^5)(2x^4 - 4y^3) = 8x^8 - 16x^4y^3 + 6x^4y^5 - 12y^8 = 8x^8 - 16x^4y^3 + 6x^4y^5 - 12y^8 \] And there you have it, all expanded and simplified!

Related Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy