Expand and simplify: \( \begin{array}{llllll}\text { (1) } \quad 3 x(x+3) & \text { (2) } & -3 a\left(3 a^{3}-6 a^{2}+a\right) & (3) & (x+5)(x+2) \\ \text { (4) } \quad(x-5)(x-2) & (5) & (x+5)(x-2) & (4) & (x-5)(x+2) \\ \text { (7) } & (3 x-1)(2 x+3) & \text { (8) } & (7 m-2 n)(3 m+4 n) & \\ \text { (9) }\left(2 x^{4}-3 y^{2}\right)\left(3 x^{4}+2 y^{2}\right) & \text { (10) }\left(4 x^{4}+3 y^{5}\right)\left(2 x^{4}-4 y^{3}\right)\end{array} \)
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Beyond the Answer
Let's expand and simplify each expression one by one! 1. For \(3x(x+3)\): \[ 3x(x + 3) = 3x^2 + 9x \] 2. For \(-3a(3a^3 - 6a^2 + a)\): \[ -3a(3a^3 - 6a^2 + a) = -9a^4 + 18a^3 - 3a^2 \] 3. For \((x+5)(x+2)\): \[ (x + 5)(x + 2) = x^2 + 2x + 5x + 10 = x^2 + 7x + 10 \] 4. For \((x-5)(x-2)\): \[ (x - 5)(x - 2) = x^2 - 2x - 5x + 10 = x^2 - 7x + 10 \] 5. For \((x+5)(x-2)\): \[ (x + 5)(x - 2) = x^2 - 2x + 5x - 10 = x^2 + 3x - 10 \] 6. For \((x-5)(x+2)\): \[ (x - 5)(x + 2) = x^2 + 2x - 5x - 10 = x^2 - 3x - 10 \] 7. For \((3x-1)(2x+3)\): \[ (3x - 1)(2x + 3) = 6x^2 + 9x - 2x - 3 = 6x^2 + 7x - 3 \] 8. For \((7m-2n)(3m+4n)\): \[ (7m - 2n)(3m + 4n) = 21m^2 + 28mn - 6mn - 8n^2 = 21m^2 + 22mn - 8n^2 \] 9. For \(\left(2x^4 - 3y^2\right)\left(3x^4 + 2y^2\right)\): \[ (2x^4 - 3y^2)(3x^4 + 2y^2) = 6x^8 + 4x^4y^2 - 9x^4y^2 - 6y^4 = 6x^8 - 5x^4y^2 - 6y^4 \] 10. For \(\left(4x^4 + 3y^5\right)\left(2x^4 - 4y^3\right)\): \[ (4x^4 + 3y^5)(2x^4 - 4y^3) = 8x^8 - 16x^4y^3 + 6x^4y^5 - 12y^8 = 8x^8 - 16x^4y^3 + 6x^4y^5 - 12y^8 \] And there you have it, all expanded and simplified!