Question
upstudy study bank question image url

La derivada de \( h(x)=\ln \left(x^{2}+3\right) \), es:

Ask by Brooks Powell. in Puerto Rico
Jan 25,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

La derivada de \( h(x) = \ln\left(x^{2} + 3\right) \) es \( h'(x) = \frac{2x}{x^{2} + 3} \).

Solution

La derivada de la función \( h(x) = \ln\left(x^{2} + 3\right) \) se calcula de la siguiente manera: 1. **Identifica la función interna:** \( u(x) = x^{2} + 3 \) 2. **Aplica la regla de la derivada del logaritmo natural:** Si \( h(x) = \ln(u(x)) \), entonces \( h'(x) = \frac{u'(x)}{u(x)} \). 3. **Calcula la derivada de la función interna \( u(x) \):** \( u'(x) = \frac{d}{dx}(x^{2} + 3) = 2x \) 4. **Sustituye \( u(x) \) y \( u'(x) \) en la fórmula de la derivada:** \[ h'(x) = \frac{2x}{x^{2} + 3} \] Por lo tanto, la derivada de \( h(x) = \ln\left(x^{2} + 3\right) \) es: \[ h'(x) = \frac{2x}{x^{2} + 3} \]

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Beyond the Answer

Para encontrar la derivada de \( h(x) = \ln(x^{2} + 3) \), utilizamos la regla de la cadena. Primero, derivamos el argumento del logaritmo: \( x^{2} + 3 \) cuya derivada es \( 2x \). Luego, aplicamos la derivada del logaritmo natural que es \( \frac{1}{u} \) donde \( u = x^{2} + 3 \). Por lo tanto, la derivada es: \[ h'(x) = \frac{1}{x^{2} + 3} \cdot 2x = \frac{2x}{x^{2} + 3} \] ¡Así que ahí tienes tu derivada lista para usar!

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy