Given \( \mathbf{v}=-5 \mathbf{i}-\mathbf{j} \) and \( \mathbf{w}=-\mathbf{i}-5 \mathbf{j} \) (a) find the dot product \( \mathbf{v} \cdot \mathbf{w} \); (b) find the angle between \( \mathbf{v} \) and \( \mathbf{w} \). (a) \( \mathbf{v} \cdot \mathbf{w}=10 \) (Simplify your answer.) (b) What is the angle between \( \mathbf{v} \) and \( \mathbf{w} \) ? \( \square^{\circ} \) (Do not round until the final answer. Then round to the nearest tenth as needed.)
Real Tutor Solution
Answer
Solution
Reviewed and approved by the UpStudy tutoring team
Extra Insights
To solve the problem, we first find the dot product \( \mathbf{v} \cdot \mathbf{w} \). ### (a) Given: \[ \mathbf{v} = -5 \mathbf{i} - \mathbf{j} \quad \text{and} \quad \mathbf{w} = -\mathbf{i} - 5 \mathbf{j} \] The dot product is calculated as follows: \[ \mathbf{v} \cdot \mathbf{w} = (-5) \cdot (-1) + (-1) \cdot (-5) = 5 + 5 = 10 \] ### (b) Now, we'll find the angle \( \theta \) between \( \mathbf{v} \) and \( \mathbf{w} \) using the formula: \[ \cos(\theta) = \frac{\mathbf{v} \cdot \mathbf{w}}{\|\mathbf{v}\| \|\mathbf{w}\|} \] First, we need to calculate the magnitudes \( \|\mathbf{v}\| \) and \( \|\mathbf{w}\| \): \[ \|\mathbf{v}\| = \sqrt{(-5)^2 + (-1)^2} = \sqrt{25 + 1} = \sqrt{26} \] \[ \|\mathbf{w}\| = \sqrt{(-1)^2 + (-5)^2} = \sqrt{1 + 25} = \sqrt{26} \] Now substituting the dot product and magnitudes into the cosine formula: \[ \cos(\theta) = \frac{10}{\sqrt{26} \cdot \sqrt{26}} = \frac{10}{26} = \frac{5}{13} \] To find the angle \( \theta \), we take the arccosine: \[ \theta = \cos^{-1}\left(\frac{5}{13}\right) \] Calculating this gives: \[ \theta \approx 62.3^\circ \] So, your final answers are: (a) \( \mathbf{v} \cdot \mathbf{w} = 10 \) (b) \( 62.3^\circ \)