Answer
\[
\frac{1 - \cos 2A}{\sin 2A} = \tan A
\]
Solution
To prove the trigonometric identity:
\[
\frac{1 - \cos 2A}{\sin 2A} = \tan A
\]
**without using tables or a calculator**, we'll utilize fundamental trigonometric identities. Here's a step-by-step demonstration:
### **Step 1: Recall the Double-Angle Formulas**
The double-angle formulas for sine and cosine are essential for this proof:
1. **Sine Double-Angle Identity**:
\[
\sin 2A = 2 \sin A \cos A
\]
2. **Cosine Double-Angle Identity**:
\[
\cos 2A = 1 - 2 \sin^2 A
\]
*(Alternatively, \(\cos 2A = 2 \cos^2 A - 1\) can also be used, but we'll proceed with the first form.)*
### **Step 2: Substitute the Cosine Double-Angle Identity into the Numerator**
Starting with the numerator of the left-hand side (LHS):
\[
1 - \cos 2A = 1 - (1 - 2 \sin^2 A) = 2 \sin^2 A
\]
So, the expression becomes:
\[
\frac{1 - \cos 2A}{\sin 2A} = \frac{2 \sin^2 A}{\sin 2A}
\]
### **Step 3: Substitute the Sine Double-Angle Identity into the Denominator**
Replace \(\sin 2A\) with its double-angle equivalent:
\[
\frac{2 \sin^2 A}{\sin 2A} = \frac{2 \sin^2 A}{2 \sin A \cos A}
\]
### **Step 4: Simplify the Fraction**
Cancel out the common factors in the numerator and the denominator:
\[
\frac{2 \sin^2 A}{2 \sin A \cos A} = \frac{\sin^2 A}{\sin A \cos A} = \frac{\sin A}{\cos A}
\]
*(Here, \(2\) in the numerator and denominator cancels out, and one \(\sin A\) in the numerator cancels with one \(\sin A\) in the denominator.)*
### **Step 5: Recognize the Tangent Function**
The simplified expression is the definition of the tangent function:
\[
\frac{\sin A}{\cos A} = \tan A
\]
### **Conclusion**
Thus, we've shown that:
\[
\frac{1 - \cos 2A}{\sin 2A} = \tan A
\]
This completes the proof.
Reviewed and approved by the UpStudy tutoring team
Explain
Simplify this solution