Answer
**9. a) i) Step Function Definition**
A **step function** is a piecewise constant function that remains at a constant value over specific intervals. Graphically, it looks like a series of horizontal steps.
**9. a) ii) Function Analysis**
Given:
\[
f(x) =
\begin{cases}
-4 & \text{if } x < -2, \\
2 & \text{if } -2 \leq x \leq 3, \\
5 & \text{if } x \geq 3.
\end{cases}
\]
- **Graph:** Horizontal lines at \( y = -4 \), \( y = 2 \), and \( y = 5 \) over their respective intervals.
- **Domain:** All real numbers \( \mathbb{R} \).
- **Range:** \(\{-4, 2, 5\}\).
- **Evaluations:**
- \( f(-100) = -4 \)
- \( f\left(\frac{1}{2}\right) = 2 \)
- \( f(203) = 5 \)
**9. b) Factor Verification**
\( x + 4 \) is **not** a factor of \( f(x) = x^{3} - 9x^{2} + 10x - 24 \) because \( f(-4) = -272 \neq 0 \).
**9. e) Piecewise Function Analysis**
Given:
\[
f(x) =
\begin{cases}
x^{2} + 1 & \text{if } x > 1, \\
|x| & \text{if } -2 \leq x \leq 1, \\
x + 2 & \text{if } x < -2.
\end{cases}
\]
- **Graph:**
- For \( x < -2 \): Line \( y = x + 2 \).
- For \( -2 \leq x \leq 1 \): Absolute value graph.
- For \( x > 1 \): Parabola \( y = x^{2} + 1 \).
- **Domain:** All real numbers \( \mathbb{R} \).
- **Range:** \( [0, \infty) \).
**Summary:**
- Defined and graphed step functions.
- Evaluated specific function values.
- Verified factors using the Factor Theorem.
- Analyzed and graphed a piecewise function, determining its domain and range.
Solution
Certainly! Let's tackle each part of Problem 9 step by step.
---
### **9. a) i) Define Step Function**
**Definition:**
A **step function** is a piecewise constant function that increases or decreases abruptly from one constant value to another. Graphically, it resembles a series of steps, hence the name. Each "step" corresponds to a specific interval of the independent variable where the function holds a constant value.
**Mathematically:**
A step function can be defined as:
\[
f(x) =
\begin{cases}
c_1 & \text{if } x \in I_1, \\
c_2 & \text{if } x \in I_2, \\
\vdots & \vdots \\
c_n & \text{if } x \in I_n,
\end{cases}
\]
where \( c_1, c_2, \ldots, c_n \) are constants and \( I_1, I_2, \ldots, I_n \) are mutually exclusive intervals covering the domain of \( f(x) \).
---
### **9. a) ii) Analyzing the Given Function**
Given the function:
\[
f(x) =
\begin{cases}
-4 & \text{if } x < -2, \\
2 & \text{if } -2 \leq x \leq 3, \\
5 & \text{if } x \geq 3.
\end{cases}
\]
#### **1. Graph of \( f(x) \)**
To graph \( f(x) \), plot the constant values over their respective intervals:
- **For \( x < -2 \):** \( f(x) = -4 \)
- **For \( -2 \leq x \leq 3 \):** \( f(x) = 2 \)
- **For \( x \geq 3 \):** \( f(x) = 5 \)
**Graph:**
![Step Function Graph](https://i.imgur.com/lWE9Frj.png)
*Note: The graph consists of horizontal lines at \( y = -4 \), \( y = 2 \), and \( y = 5 \) over their respective intervals. Use open or closed circles to indicate inclusivity at interval boundaries.*
#### **2. Domain and Range**
- **Domain:** All real numbers \( \mathbb{R} \), since \( f(x) \) is defined for every real \( x \).
\[
\text{Domain} = (-\infty, \infty)
\]
- **Range:** The set of output values, which are the constants defined.
\[
\text{Range} = \{-4, 2, 5\}
\]
#### **3. Evaluating \( f(-100) \), \( f\left(\frac{1}{2}\right) \), and \( f(203) \)**
- **\( f(-100) \):**
Since \( -100 < -2 \),
\[
f(-100) = -4
\]
- **\( f\left(\frac{1}{2}\right) \):**
Since \( -2 \leq \frac{1}{2} \leq 3 \),
\[
f\left(\frac{1}{2}\right) = 2
\]
- **\( f(203) \):**
Since \( 203 \geq 3 \),
\[
f(203) = 5
\]
---
### **9. b) Verifying That \( x + 4 \) Is Not a Factor of \( f(x) = x^{3} - 9x^{2} + 10x - 24 \)**
To verify if \( x + 4 \) is a factor of \( f(x) \), we can use the **Factor Theorem**. The Factor Theorem states that \( (x - c) \) is a factor of a polynomial \( f(x) \) if and only if \( f(c) = 0 \).
Here, \( x + 4 = 0 \) implies \( x = -4 \). We'll evaluate \( f(-4) \):
\[
f(-4) = (-4)^3 - 9(-4)^2 + 10(-4) - 24
\]
\[
= -64 - 9(16) - 40 - 24
\]
\[
= -64 - 144 - 40 - 24
\]
\[
= -272 \neq 0
\]
**Conclusion:**
Since \( f(-4) \neq 0 \), \( x + 4 \) is **not** a factor of \( f(x) \).
---
### **9. e) Sketching the Graph of \( f(x) \) and Determining Its Domain and Range**
Given the function:
\[
f(x) =
\begin{cases}
x^{2} + 1 & \text{for } x > 1, \\
|x| & \text{for } -2 \leq x \leq 1, \\
x + 2 & \text{for } x < -2.
\end{cases}
\]
> **Note:** There seems to be a slight typo in the function definition provided. The last piece likely applies to \( x < -2 \) instead of "x 2". We'll proceed under this assumption.
#### **1. Graph of \( f(x) \)**
Let's analyze each piece:
- **For \( x < -2 \):** \( f(x) = x + 2 \)
This is a straight line with a slope of 1 and y-intercept at \( (0, 2) \).
- **For \( -2 \leq x \leq 1 \):** \( f(x) = |x| \)
This is the absolute value function, V-shaped with a vertex at \( (0, 0) \).
- **For \( x > 1 \):** \( f(x) = x^{2} + 1 \)
This is a parabola opening upwards with vertex at \( (0, 1) \), but only for \( x > 1 \).
**Graph:**
![Piecewise Function Graph](https://i.imgur.com/6cFZzHL.png)
*Description:*
- **\( x < -2 \):** Line increasing from left, passes through \( (-2, 0) \).
- **\( -2 \leq x \leq 1 \):** Absolute value graph from \( (-2, 2) \) to \( (0, 0) \) to \( (1, 1) \).
- **\( x > 1 \):** Parabola starting at \( (1, 2) \) and increasing.
#### **2. Domain and Range**
- **Domain:** All real numbers \( \mathbb{R} \), as each piece covers a part of the real line without gaps.
\[
\text{Domain} = (-\infty, \infty)
\]
- **Range:** Let's determine based on each piece:
- **\( x < -2 \):** \( f(x) = x + 2 \). As \( x \) approaches \( -\infty \), \( f(x) \) approaches \( -\infty \). At \( x = -2 \), \( f(-2) = -2 + 2 = 0 \).
- **\( -2 \leq x \leq 1 \):** \( f(x) = |x| \). The outputs range from \( 0 \) to \( 2 \).
- **\( x > 1 \):** \( f(x) = x^{2} + 1 \). As \( x \) increases, \( f(x) \) increases without bound. At \( x = 1 \), \( f(1) = 1 + 1 = 2 \).
Combining these:
\[
\text{Range} = (-\infty, 2] \cup [2, \infty) = (-\infty, \infty)
\]
However, upon closer inspection:
- The function approaches \( -\infty \) as \( x \to -\infty \).
- The minimum value of \( f(x) \) is \( 0 \) at \( x = 0 \).
Therefore, the corrected range is:
\[
\text{Range} = [0, \infty)
\]
---
**Summary:**
- **9.a.i)** Defined the step function.
- **9.a.ii)** Graphed the step function, determined its domain \((-∞, ∞)\) and range \(\{-4, 2, 5\}\), and evaluated \( f(-100) = -4 \), \( f\left(\frac{1}{2}\right) = 2 \), and \( f(203) = 5 \).
- **9.b)** Verified using the Factor Theorem that \( x + 4 \) is not a factor of \( f(x) = x^{3} - 9x^{2} + 10x - 24 \).
- **9.e)** Sketched the piecewise function \( f(x) \), determined its domain as all real numbers \((-∞, ∞)\), and its range as \([0, ∞)\).
Feel free to reach out if you have any further questions or need additional clarifications!
Reviewed and approved by the UpStudy tutoring team
Explain
Simplify this solution