Find the exact value of each of the remaining trigonometric functions of \( \theta \). Rationalize denominators when applicable. \( \sec \theta=-5 \), given that \( \sin \theta>0 \) Select the correct choice below and, if necessary, fill in the answer box to complete your choice. A. \( \sin \theta=\square \) (Simplify your answer, including any radicals. Use integers or fractions for any numbers in the expression.) B. The function is undefined.
Real Tutor Solution
Answer
Solution
Reviewed and approved by the UpStudy tutoring team
Mind Expander
Since \( \sec \theta = -5 \), we know \( \cos \theta = -\frac{1}{5} \). Now, using the Pythagorean identity \( \sin^2 \theta + \cos^2 \theta = 1 \), we can find \( \sin \theta \). Substituting \( \cos \theta \): \[ \sin^2 \theta + \left(-\frac{1}{5}\right)^2 = 1 \] \[ \sin^2 \theta + \frac{1}{25} = 1 \] \[ \sin^2 \theta = 1 - \frac{1}{25} = \frac{25}{25} - \frac{1}{25} = \frac{24}{25} \] Now, taking the square root: \[ \sin \theta = \sqrt{\frac{24}{25}} = \frac{\sqrt{24}}{5} = \frac{2\sqrt{6}}{5} \] Since we know \( \sin \theta > 0 \), we have: A. \( \sin \theta = \frac{2\sqrt{6}}{5} \) Now, let's find the exact values of the remaining trigonometric functions. 1. **\( \tan \theta = \frac{\sin \theta}{\cos \theta} \)** \[ \tan \theta = \frac{\frac{2\sqrt{6}}{5}}{-\frac{1}{5}} = -2\sqrt{6} \] 2. **\( \csc \theta = \frac{1}{\sin \theta} = \frac{5}{2\sqrt{6}} = \frac{5\sqrt{6}}{12} \) (after rationalizing)** 3. **\( \cot \theta = \frac{1}{\tan \theta} = -\frac{1}{2\sqrt{6}} = -\frac{\sqrt{6}}{12} \) (after rationalizing)** 4. **\( \cos \theta = -\frac{1}{5} \) already stated.** Finally, the values for all the trigonometric functions are: - \( \sin \theta = \frac{2\sqrt{6}}{5} \) - \( \cos \theta = -\frac{1}{5} \) - \( \tan \theta = -2\sqrt{6} \) - \( \csc \theta = \frac{5\sqrt{6}}{12} \) - \( \sec \theta = -5 \) - \( \cot \theta = -\frac{\sqrt{6}}{12} \) So, to complete the answer: A. \( \sin \theta = \frac{2\sqrt{6}}{5} \)