Question
upstudy study bank question image url

5. Complete the following. a) Simplify: i) \( \left(m+\frac{1}{m}\right)\left(m^{2}-1+\frac{1}{m^{2}}\right) \) ii) \( \left(m+\frac{1}{m}\right)^{2} \). b) If \( m+\frac{1}{m}=2 \), calculate the value of: i) \( m^{2}+\frac{1}{m^{2}} \) ii) \( m^{3}+\frac{1}{m^{3}} \)

Ask by Brewer Barrett. in South Africa
Feb 03,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

**Solutions:** a) i) \( m^{3} + \dfrac{1}{m^{3}} \) ii) \( m^{2} + 2 + \dfrac{1}{m^{2}} \) b) i) 2 ii) 2

Solution

Certainly! Let's tackle each part of the problem step-by-step. --- ## **Problem 5** ### **a) Simplify:** #### **i) Simplify \( \left(m + \frac{1}{m}\right) \left(m^{2} - 1 + \frac{1}{m^{2}}\right) \)** **Solution:** To simplify the expression, we'll multiply the two binomials term by term. \[ \left(m + \frac{1}{m}\right) \left(m^{2} - 1 + \frac{1}{m^{2}}\right) \] **Step 1:** Expand the product using the distributive property (FOIL method): \[ = m \cdot m^{2} + m \cdot (-1) + m \cdot \frac{1}{m^{2}} + \frac{1}{m} \cdot m^{2} + \frac{1}{m} \cdot (-1) + \frac{1}{m} \cdot \frac{1}{m^{2}} \] **Step 2:** Multiply each term: \[ = m^3 - m + \frac{m}{m^{2}} + \frac{m^{2}}{m} - \frac{1}{m} + \frac{1}{m^{3}} \] Simplify the fractions: \[ = m^3 - m + \frac{1}{m} + m - \frac{1}{m} + \frac{1}{m^{3}} \] **Step 3:** Combine like terms: \[ - m + m = 0 \quad \text{and} \quad \frac{1}{m} - \frac{1}{m} = 0 \] So, the expression simplifies to: \[ m^3 + \frac{1}{m^{3}} \] **Final Answer:** \[ \boxed{m^{3} + \dfrac{1}{m^{3}}} \] --- #### **ii) Simplify \( \left(m + \frac{1}{m}\right)^{2} \)** **Solution:** We'll use the formula for squaring a binomial: \[ \left(m + \frac{1}{m}\right)^{2} = m^{2} + 2 \cdot m \cdot \frac{1}{m} + \left(\frac{1}{m}\right)^{2} \] **Step 1:** Simplify each term: \[ = m^{2} + 2 \cdot 1 + \frac{1}{m^{2}} \] \[ = m^{2} + 2 + \frac{1}{m^{2}} \] **Final Answer:** \[ \boxed{m^{2} + 2 + \dfrac{1}{m^{2}}} \] --- ### **b) If \( m + \frac{1}{m} = 2 \), calculate the value of:** #### **i) \( m^{2} + \frac{1}{m^{2}} \)** **Solution:** Given: \[ m + \frac{1}{m} = 2 \] We'll square both sides to find \( m^{2} + \frac{1}{m^{2}} \). **Step 1:** Square both sides: \[ \left(m + \frac{1}{m}\right)^{2} = 2^{2} \] \[ m^{2} + 2 \cdot m \cdot \frac{1}{m} + \frac{1}{m^{2}} = 4 \] Simplify: \[ m^{2} + 2 + \frac{1}{m^{2}} = 4 \] **Step 2:** Subtract 2 from both sides: \[ m^{2} + \frac{1}{m^{2}} = 4 - 2 = 2 \] **Final Answer:** \[ \boxed{2} \] --- #### **ii) \( m^{3} + \frac{1}{m^{3}} \)** **Solution:** We can use the identity for the cube of a binomial: \[ \left(m + \frac{1}{m}\right)^{3} = m^{3} + 3m + 3\left(\frac{1}{m}\right) + \frac{1}{m^{3}} \] Which simplifies to: \[ m^{3} + \frac{1}{m^{3}} + 3\left(m + \frac{1}{m}\right) \] Given \( m + \frac{1}{m} = 2 \), we can rearrange the formula to solve for \( m^{3} + \frac{1}{m^{3}} \): \[ m^{3} + \frac{1}{m^{3}} = \left(m + \frac{1}{m}\right)^{3} - 3\left(m + \frac{1}{m}\right) \] **Step 1:** Compute \( \left(m + \frac{1}{m}\right)^{3} \): \[ 2^{3} = 8 \] **Step 2:** Multiply 3 by \( m + \frac{1}{m} \): \[ 3 \times 2 = 6 \] **Step 3:** Subtract: \[ m^{3} + \frac{1}{m^{3}} = 8 - 6 = 2 \] **Final Answer:** \[ \boxed{2} \] ---

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Bonus Knowledge

To tackle these problems, let's simplify and calculate step by step. a) i) First, simplify \( \left(m+\frac{1}{m}\right)\left(m^{2}-1+\frac{1}{m^{2}}\right) \). Starting with the first expression: \[ m^2 - 1 + \frac{1}{m^2} = (m^2 + \frac{1}{m^2}) - 1 \] Now, we recognize that \( m^2 + \frac{1}{m^2} \) can be derived from the identity \( (m + \frac{1}{m})^2 = m^2 + 2 + \frac{1}{m^2} \), so \( m^2 + \frac{1}{m^2} = (m+\frac{1}{m})^2 - 2 \). Then we substitute: \[ m^2 - 1 + \frac{1}{m^2} = (m+\frac{1}{m})^2 - 3 \] Substituting back, we get: \[ \left(m+\frac{1}{m}\right)\left((m+\frac{1}{m})^2 - 3\right) \] Let \( x = m+\frac{1}{m} \): \[ x (x^2 - 3) = x^3 - 3x \] ii) For \( \left(m+\frac{1}{m}\right)^{2} \): \[ \left(m+\frac{1}{m}\right)^{2} = m^2 + 2 + \frac{1}{m^2} \] So, it simplifies directly to: \[ m^2 + \frac{1}{m^2} + 2 \] b) i) If \( m+\frac{1}{m}=2 \), then substituting into the derived formula: \[ m^2 + \frac{1}{m^2} = (m+\frac{1}{m})^2 - 2 = 2^2 - 2 = 4 - 2 = 2 \] ii) To find \( m^{3}+\frac{1}{m^{3}} \), use the identity: \[ m^{3}+\frac{1}{m^{3}} = \left(m+\frac{1}{m}\right) \left(m^{2}+\frac{1}{m^{2}}\right) - (m+\frac{1}{m}) \] Substituting values: \[ m^{3}+\frac{1}{m^{3}} = 2 \cdot 2 - 2 = 4 - 2 = 2 \] Thus, summarizing the results: a) i) \( x^3 - 3x \) ii) \( m^2 + \frac{1}{m^2} + 2 \) b) i) 2 ii) 2

Related Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy