Pregunta
upstudy study bank question image url

Find the exact value of each of the remaining trigonometric functions of \( \theta \). Rationalize denominators when applicable. \( \sec \theta=-5 \), given that \( \sin \theta>0 \) Select the correct choice below and, if necessary, fill in the answer box to complete your choice. A. \( \sin \theta=\square \) (Simplify your answer, including any radicals. Use integers or fractions for any numbers in the expression.) B. The function is undefined.

Ask by George Hodges. in the United States
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

\( \sin \theta = \dfrac{2\,\sqrt{6}}{5} \)

Solución

Given that \( \sec \theta = -5 \) and \( \sin \theta > 0 \), we can determine the remaining trigonometric functions as follows: 1. **Find \( \cos \theta \):** \[ \sec \theta = \frac{1}{\cos \theta} \implies \cos \theta = \frac{1}{\sec \theta} = \frac{1}{-5} = -\frac{1}{5} \] 2. **Determine \( \sin \theta \):** Since \( \sin^2 \theta + \cos^2 \theta = 1 \), \[ \sin^2 \theta = 1 - \cos^2 \theta = 1 - \left(-\frac{1}{5}\right)^2 = 1 - \frac{1}{25} = \frac{24}{25} \] \[ \sin \theta = \sqrt{\frac{24}{25}} = \frac{\sqrt{24}}{5} = \frac{2\sqrt{6}}{5} \] (We take the positive root because \( \sin \theta > 0 \).) 3. **Other Trigonometric Functions:** \[ \tan \theta = \frac{\sin \theta}{\cos \theta} = \frac{\frac{2\sqrt{6}}{5}}{-\frac{1}{5}} = -2\sqrt{6} \] \[ \csc \theta = \frac{1}{\sin \theta} = \frac{1}{\frac{2\sqrt{6}}{5}} = \frac{5}{2\sqrt{6}} = \frac{5\sqrt{6}}{12} \] \[ \cot \theta = \frac{1}{\tan \theta} = \frac{1}{-2\sqrt{6}} = -\frac{\sqrt{6}}{12} \] **Final Answer:** **A.** \( \sin \theta = \dfrac{2\,\sqrt{6}}{5} \)

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

Since \( \sec \theta = -5 \), we know \( \cos \theta = -\frac{1}{5} \). Now, using the Pythagorean identity \( \sin^2 \theta + \cos^2 \theta = 1 \), we can find \( \sin \theta \). Substituting \( \cos \theta \): \[ \sin^2 \theta + \left(-\frac{1}{5}\right)^2 = 1 \] \[ \sin^2 \theta + \frac{1}{25} = 1 \] \[ \sin^2 \theta = 1 - \frac{1}{25} = \frac{25}{25} - \frac{1}{25} = \frac{24}{25} \] Now, taking the square root: \[ \sin \theta = \sqrt{\frac{24}{25}} = \frac{\sqrt{24}}{5} = \frac{2\sqrt{6}}{5} \] Since we know \( \sin \theta > 0 \), we have: A. \( \sin \theta = \frac{2\sqrt{6}}{5} \) Now, let's find the exact values of the remaining trigonometric functions. 1. **\( \tan \theta = \frac{\sin \theta}{\cos \theta} \)** \[ \tan \theta = \frac{\frac{2\sqrt{6}}{5}}{-\frac{1}{5}} = -2\sqrt{6} \] 2. **\( \csc \theta = \frac{1}{\sin \theta} = \frac{5}{2\sqrt{6}} = \frac{5\sqrt{6}}{12} \) (after rationalizing)** 3. **\( \cot \theta = \frac{1}{\tan \theta} = -\frac{1}{2\sqrt{6}} = -\frac{\sqrt{6}}{12} \) (after rationalizing)** 4. **\( \cos \theta = -\frac{1}{5} \) already stated.** Finally, the values for all the trigonometric functions are: - \( \sin \theta = \frac{2\sqrt{6}}{5} \) - \( \cos \theta = -\frac{1}{5} \) - \( \tan \theta = -2\sqrt{6} \) - \( \csc \theta = \frac{5\sqrt{6}}{12} \) - \( \sec \theta = -5 \) - \( \cot \theta = -\frac{\sqrt{6}}{12} \) So, to complete the answer: A. \( \sin \theta = \frac{2\sqrt{6}}{5} \)

preguntas relacionadas

Latest Trigonometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad