Question
upstudy study bank question image url

5 Find the value of \( n \) if: a \( 2+4+8+\ldots \) to \( n \) terms \( =1022 \) b \( 6-18+54+\ldots \) to \( n \) terms \( =-120 \) c \( \sum_{r=1}^{n} 3 \cdot 2^{r-1}=381 \) d \( \sum_{i=1}^{n} \frac{1}{5}(3)^{r-1}=24 \frac{1}{5} \) e \( \sum_{k=1}^{n}(-8) \cdot(0,5)^{k-1}=-\frac{63}{4} \)

Ask by Gibson Burton. in South Africa
Jan 23,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

The values of \( n \) are: - a. 9 - b. 4 - c. 7 - d. 5 - e. 6

Solution

Let's solve each part step-by-step. --- ### **a. \( 2 + 4 + 8 + \ldots \) to \( n \) terms \( = 1022 \)** This is a geometric series with: - First term \( a = 2 \) - Common ratio \( r = 2 \) - Sum formula: \( S_n = a \frac{r^n - 1}{r - 1} \) Substituting the known values: \[ 1022 = 2 \frac{2^n - 1}{2 - 1} \\ 1022 = 2(2^n - 1) \\ 2^n - 1 = 511 \\ 2^n = 512 \\ 2^9 = 512 \\ \boxed{n = 9} \] --- ### **b. \( 6 - 18 + 54 + \ldots \) to \( n \) terms \( = -120 \)** This is a geometric series with: - First term \( a = 6 \) - Common ratio \( r = -3 \) - Sum formula: \( S_n = a \frac{1 - r^n}{1 - r} \) Substituting the known values: \[ -120 = 6 \frac{1 - (-3)^n}{1 - (-3)} \\ -120 = 6 \frac{1 - (-3)^n}{4} \\ -480 = 6(1 - (-3)^n) \\ -80 = 1 - (-3)^n \\ (-3)^n = 81 \\ (-3)^4 = 81 \\ \boxed{n = 4} \] --- ### **c. \( \sum_{r=1}^{n} 3 \cdot 2^{r-1} = 381 \)** This is a geometric series with: - First term \( a = 3 \) - Common ratio \( r = 2 \) - Sum formula: \( S_n = a \frac{r^n - 1}{r - 1} \) Substituting the known values: \[ 381 = 3 \frac{2^n - 1}{2 - 1} \\ 381 = 3(2^n - 1) \\ 2^n - 1 = 127 \\ 2^n = 128 \\ 2^7 = 128 \\ \boxed{n = 7} \] --- ### **d. \( \sum_{i=1}^{n} \frac{1}{5}(3)^{r-1} = 24 \frac{1}{5} \)** First, convert \( 24 \frac{1}{5} \) to an improper fraction: \[ 24 \frac{1}{5} = \frac{121}{5} \] This is a geometric series with: - First term \( a = \frac{1}{5} \) - Common ratio \( r = 3 \) - Sum formula: \( S_n = a \frac{r^n - 1}{r - 1} \) Substituting the known values: \[ \frac{121}{5} = \frac{1}{5} \cdot \frac{3^n - 1}{3 - 1} \\ \frac{121}{5} = \frac{3^n - 1}{10} \\ 3^n - 1 = 242 \\ 3^n = 243 \\ 3^5 = 243 \\ \boxed{n = 5} \] --- ### **e. \( \sum_{k=1}^{n} (-8) \cdot (0.5)^{k-1} = -\frac{63}{4} \)** This is a geometric series with: - First term \( a = -8 \) - Common ratio \( r = 0.5 \) - Sum formula: \( S_n = a \frac{1 - r^n}{1 - r} \) Substituting the known values: \[ -\frac{63}{4} = -8 \frac{1 - (0.5)^n}{1 - 0.5} \\ -\frac{63}{4} = -8 \cdot 2 (1 - (0.5)^n) \\ -\frac{63}{4} = -16 (1 - (0.5)^n) \\ \frac{63}{4} = 16 (1 - (0.5)^n) \\ 1 - (0.5)^n = \frac{63}{64} \\ (0.5)^n = \frac{1}{64} \\ \left(\frac{1}{2}\right)^n = \left(\frac{1}{2}\right)^6 \\ \boxed{n = 6} \] --- **Final Answers:** - **a.** \( n = 9 \) - **b.** \( n = 4 \) - **c.** \( n = 7 \) - **d.** \( n = 5 \) - **e.** \( n = 6 \)

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Bonus Knowledge

Let's solve each part step by step! ### Part a: \( 2 + 4 + 8 + \ldots \) to \( n \) terms \( =1022 \) This is a geometric series with the first term \( a = 2 \) and common ratio \( r = 2 \). The sum of the first \( n \) terms of a geometric series can be calculated using the formula: \[ S_n = a \frac{r^n - 1}{r - 1} \] Substituting the values: \[ 1022 = 2 \frac{2^n - 1}{2 - 1} \] So, \[ 1022 = 2(2^n - 1) \implies 1022 = 2^{n+1} - 2 \implies 1024 = 2^{n+1} \] Thus, \[ 2^{n+1} = 1024 \implies n + 1 = 10 \implies n = 9. \] ### Part b: \( 6 - 18 + 54 + \ldots \) to \( n \) terms \( = -120 \) This series has the first term \( a = 6 \) and common ratio \( r = -3 \). The sum of the first \( n \) terms is calculated using: \[ S_n = a \frac{1 - r^n}{1 - r} \] Plug in: \[ -120 = 6 \frac{1 - (-3)^n}{1 - (-3)} \] This simplifies to: \[ -120 = 6 \frac{1 + 3^n}{4} \implies -480 = 6(1 + 3^n) \implies -80 = 1 + 3^n \] So, \[ 3^n = -81 \quad \text{(not possible as \( 3^n \) cannot be negative)} \] Let's calculate if we can find something useful by checking for positive integers only. ### Part c: \( \sum_{r=1}^{n} 3 \cdot 2^{r-1}=381 \) Here, this series can be rewritten as: \[ 3(2^0 + 2^1 + \ldots + 2^{n-1}) = 381 \] Using the sum formula for a geometric series again: \[ 3 \left( \frac{2^n - 1}{2 - 1} \right) = 381 \implies 3(2^n - 1) = 381 \implies 2^n - 1 = 127 \implies 2^n = 128 \] Thus, \[ n = 7. \] ### Part d: \( \sum_{i=1}^{n} \frac{1}{5}(3)^{r-1}=24 \frac{1}{5} \) This is similar: \[ \frac{1}{5} (3^0 + 3^1 + \ldots + 3^{n-1}) = 24.2 \] Multiply both sides by 5: \[ 3^0 + 3^1 + \ldots + 3^{n-1} = 121 \] The sum is: \[ \frac{3^n - 1}{3 - 1} = 121 \implies 3^n - 1 = 242 \implies 3^n = 243 \implies n = 5. \] ### Part e: \( \sum_{k=1}^{n} (-8)(0.5)^{k-1}=-\frac{63}{4} \) This series can be rewritten as: \[ -8 \sum_{k=0}^{n-1} (0.5)^k = -\frac{63}{4} \] Calculating yields: \[ -8 \left( \frac{1 - (0.5)^n}{1 - 0.5} \right) = -\frac{63}{4} \implies -8(1 - (0.5)^n) \cdot 2 = -\frac{63}{4} \] Thus: \[ -16(1 - (0.5)^n) = -\frac{63}{4} \implies 16(1 - (0.5)^n) = \frac{63}{4} \] Now multiply by 4 to clear fractions: \[ 64(1 - (0.5)^n) = 63 \implies

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy