Question
upstudy study bank question image url

If \( f(x) \) is an exponential function of the form of \( y=a b^{x} \) where \( f(4.5)=20 \) and \( f(11)=76 \), then find the value of \( f(16.5) \), to the nearest hundredth.

Ask by Black Craig. in the United States
Jan 23,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

\( f(16.5) \approx 235.18 \)

Solution

Given that \( f(x) \) is an exponential function of the form \( y = ab^x \), where \( f(4.5) = 20 \) and \( f(11) = 76 \), we need to find the value of \( f(16.5) \) to the nearest hundredth. To find the value of \( f(16.5) \), we first need to determine the values of \( a \) and \( b \) using the given information. We have two equations: 1. \( 20 = ab^{4.5} \) 2. \( 76 = ab^{11} \) We can solve these equations simultaneously to find the values of \( a \) and \( b \). Let's solve the system of equations to find the values of \( a \) and \( b \). Solve the system of equations by following steps: - step0: Solve using the substitution method: \(\left\{ \begin{array}{l}20=ab^{4.5}\\76=ab^{11}\end{array}\right.\) - step1: Calculate: \(\left\{ \begin{array}{l}20=ab^{\frac{9}{2}}\\76=ab^{11}\end{array}\right.\) - step2: Solve the equation: \(\left\{ \begin{array}{l}a=\frac{20\sqrt{b}}{b^{5}}\\76=ab^{11}\end{array}\right.\) - step3: Substitute the value of \(a:\) \(76=\frac{20\sqrt{b}}{b^{5}}\times b^{11}\) - step4: Reduce the fraction: \(76=20\sqrt{b}\times b^{6}\) - step5: Swap the sides: \(20\sqrt{b}\times b^{6}=76\) - step6: Move the expression to the left side: \(20\sqrt{b}\times b^{6}-76=0\) - step7: Evaluate: \(20b^{6}\sqrt{b}-76=0\) - step8: Move the constant to the right-hand side: \(20b^{6}\sqrt{b}=76\) - step9: Divide both sides: \(5b^{6}\sqrt{b}=19\) - step10: Raise both sides to the \(2\)-th power\(:\) \(\left(5b^{6}\sqrt{b}\right)^{2}=19^{2}\) - step11: Evaluate the power: \(25b^{13}=361\) - step12: Divide both sides: \(\frac{25b^{13}}{25}=\frac{361}{25}\) - step13: Divide the numbers: \(b^{13}=\frac{361}{25}\) - step14: Simplify the equation: \(\sqrt[13]{b^{13}}=\sqrt[13]{\frac{361}{25}}\) - step15: Calculate: \(b=\sqrt[13]{\frac{361}{25}}\) - step16: Simplify the root: \(b=\frac{\sqrt[13]{361\times 5^{11}}}{5}\) - step17: Substitute the value of \(b:\) \(a=\frac{20\sqrt{\frac{\sqrt[13]{361\times 5^{11}}}{5}}}{\left(\frac{\sqrt[13]{361\times 5^{11}}}{5}\right)^{5}}\) - step18: Simplify: \(a=\frac{4\sqrt[13]{19\times 5^{12}\left(361\times 5^{11}\right)^{8}}}{5640625}\) - step19: Calculate: \(a=\frac{4\sqrt[13]{19^{17}\times 5^{100}}}{5640625}\) - step20: Calculate: \(\left\{ \begin{array}{l}a=\frac{4\sqrt[13]{19^{17}\times 5^{100}}}{5640625}\\b=\frac{\sqrt[13]{361\times 5^{11}}}{5}\end{array}\right.\) - step21: Check the solution: \(\left\{ \begin{array}{l}a=\frac{4\sqrt[13]{19^{17}\times 5^{100}}}{5640625}\\b=\frac{\sqrt[13]{361\times 5^{11}}}{5}\end{array}\right.\) - step22: Rewrite: \(\left(a,b\right) = \left(\frac{4\sqrt[13]{19^{17}\times 5^{100}}}{5640625},\frac{\sqrt[13]{361\times 5^{11}}}{5}\right)\) The solution to the system of equations is \( a = \frac{4\sqrt[13]{19^{17} \times 5^{100}}}{5640625} \) and \( b = \frac{\sqrt[13]{361 \times 5^{11}}}{5} \). Now that we have the values of \( a \) and \( b \), we can substitute them into the exponential function \( f(x) = ab^x \) to find the value of \( f(16.5) \). Substitute \( a = \frac{4\sqrt[13]{19^{17} \times 5^{100}}}{5640625} \) and \( b = \frac{\sqrt[13]{361 \times 5^{11}}}{5} \) into the function \( f(x) = ab^x \) to find \( f(16.5) \). Calculate the value by following steps: - step0: Calculate: \(\frac{4\sqrt[13]{19^{17}\times 5^{100}}}{5640625}\left(\frac{\sqrt[13]{361\times 5^{11}}}{5}\right)^{16.5}\) - step1: Convert the expressions: \(\frac{4\sqrt[13]{19^{17}\times 5^{100}}}{5640625}\left(\frac{\sqrt[13]{361\times 5^{11}}}{5}\right)^{\frac{33}{2}}\) - step2: Evaluate the power: \(\frac{4\sqrt[13]{19^{17}\times 5^{100}}}{5640625}\times \frac{\left(\sqrt[13]{361\times 5^{11}}\right)^{\frac{33}{2}}}{5^{\frac{33}{2}}}\) - step3: Multiply the fractions: \(\frac{4\sqrt[13]{19^{17}\times 5^{100}}\times \left(\sqrt[13]{361\times 5^{11}}\right)^{\frac{33}{2}}}{5640625\times 5^{\frac{33}{2}}}\) - step4: Multiply: \(\frac{4\left(\sqrt[13]{361\times 5^{11}}\right)^{\frac{33}{2}}\sqrt[13]{19^{17}\times 5^{100}}}{5640625\times 5^{\frac{33}{2}}}\) - step5: Calculate: \(\frac{1444\times 5^{11}\sqrt[26]{\left(361\times 5^{11}\right)^{7}\left(19^{17}\times 5^{100}\right)^{2}}}{5640625\times 5^{\frac{33}{2}}}\) - step6: Reduce the fraction: \(\frac{4\sqrt[26]{\left(361\times 5^{11}\right)^{7}\left(19^{17}\times 5^{100}\right)^{2}}}{5^{\frac{23}{2}}}\) - step7: Simplify: \(\frac{4\sqrt[26]{\left(361\times 5^{11}\right)^{7}\left(19^{17}\times 5^{100}\right)^{2}}}{5^{11}\sqrt{5}}\) - step8: Multiply by the Conjugate: \(\frac{4\sqrt[26]{\left(361\times 5^{11}\right)^{7}\left(19^{17}\times 5^{100}\right)^{2}}\times \sqrt{5}}{5^{11}\sqrt{5}\times \sqrt{5}}\) - step9: Multiply the numbers: \(\frac{4\sqrt[26]{\left(361\times 5^{11}\right)^{7}\left(19^{17}\times 5^{100}\right)^{2}\times 5^{13}}}{5^{11}\sqrt{5}\times \sqrt{5}}\) - step10: Multiply the numbers: \(\frac{4\sqrt[26]{\left(361\times 5^{11}\right)^{7}\left(19^{17}\times 5^{100}\right)^{2}\times 5^{13}}}{5^{12}}\) - step11: Expand the expression: \(\frac{4\sqrt[26]{19^{48}\times 5^{290}}}{5^{12}}\) The value of \( f(16.5) \) to the nearest hundredth is approximately 235.18.

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

The Deep Dive

To solve for \( f(16.5) \) in the exponential function \( f(x) = a b^x \) given the values \( f(4.5) = 20 \) and \( f(11) = 76 \), we can set up two equations based on those values. 1. From the first point: \[ 20 = a b^{4.5} \quad \text{(1)} \] 2. From the second point: \[ 76 = a b^{11} \quad \text{(2)} \] Next, we can divide equation (2) by equation (1) to eliminate \( a \): \[ \frac{76}{20} = \frac{a b^{11}}{a b^{4.5}} \] This simplifies to: \[ 3.8 = b^{11-4.5} = b^{6.5} \] Now we take both sides to the power of \( \frac{1}{6.5} \): \[ b = 3.8^{\frac{1}{6.5}} \] Calculating \( b \): \[ b \approx 1.66 \] Now we can use this value of \( b \) to find \( a \). We can substitute back into equation (1): \[ 20 = a (1.66)^{4.5} \] Calculating \( (1.66)^{4.5} \): \[ (1.66)^{4.5} \approx 6.83 \] So we have: \[ 20 = a \cdot 6.83 \] Therefore: \[ a \approx \frac{20}{6.83} \approx 2.93 \] Now that we have values for \( a \) and \( b \): \[ a \approx 2.93, \quad b \approx 1.66 \] Now we can find \( f(16.5) \): \[ f(16.5) = a b^{16.5} \approx 2.93 \cdot (1.66)^{16.5} \] Calculating \( (1.66)^{16.5} \): \[ (1.66)^{16.5} \approx 113.3 \] Finally, we calculate: \[ f(16.5) \approx 2.93 \cdot 113.3 \approx 332.86 \] Thus, the value of \( f(16.5) \) to the nearest hundredth is: \[ \boxed{332.86} \]

Latest Pre Calculus Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy