Answer
\( f(16.5) \approx 235.18 \)
Solution
Given that \( f(x) \) is an exponential function of the form \( y = ab^x \), where \( f(4.5) = 20 \) and \( f(11) = 76 \), we need to find the value of \( f(16.5) \) to the nearest hundredth.
To find the value of \( f(16.5) \), we first need to determine the values of \( a \) and \( b \) using the given information.
We have two equations:
1. \( 20 = ab^{4.5} \)
2. \( 76 = ab^{11} \)
We can solve these equations simultaneously to find the values of \( a \) and \( b \).
Let's solve the system of equations to find the values of \( a \) and \( b \).
Solve the system of equations by following steps:
- step0: Solve using the substitution method:
\(\left\{ \begin{array}{l}20=ab^{4.5}\\76=ab^{11}\end{array}\right.\)
- step1: Calculate:
\(\left\{ \begin{array}{l}20=ab^{\frac{9}{2}}\\76=ab^{11}\end{array}\right.\)
- step2: Solve the equation:
\(\left\{ \begin{array}{l}a=\frac{20\sqrt{b}}{b^{5}}\\76=ab^{11}\end{array}\right.\)
- step3: Substitute the value of \(a:\)
\(76=\frac{20\sqrt{b}}{b^{5}}\times b^{11}\)
- step4: Reduce the fraction:
\(76=20\sqrt{b}\times b^{6}\)
- step5: Swap the sides:
\(20\sqrt{b}\times b^{6}=76\)
- step6: Move the expression to the left side:
\(20\sqrt{b}\times b^{6}-76=0\)
- step7: Evaluate:
\(20b^{6}\sqrt{b}-76=0\)
- step8: Move the constant to the right-hand side:
\(20b^{6}\sqrt{b}=76\)
- step9: Divide both sides:
\(5b^{6}\sqrt{b}=19\)
- step10: Raise both sides to the \(2\)-th power\(:\)
\(\left(5b^{6}\sqrt{b}\right)^{2}=19^{2}\)
- step11: Evaluate the power:
\(25b^{13}=361\)
- step12: Divide both sides:
\(\frac{25b^{13}}{25}=\frac{361}{25}\)
- step13: Divide the numbers:
\(b^{13}=\frac{361}{25}\)
- step14: Simplify the equation:
\(\sqrt[13]{b^{13}}=\sqrt[13]{\frac{361}{25}}\)
- step15: Calculate:
\(b=\sqrt[13]{\frac{361}{25}}\)
- step16: Simplify the root:
\(b=\frac{\sqrt[13]{361\times 5^{11}}}{5}\)
- step17: Substitute the value of \(b:\)
\(a=\frac{20\sqrt{\frac{\sqrt[13]{361\times 5^{11}}}{5}}}{\left(\frac{\sqrt[13]{361\times 5^{11}}}{5}\right)^{5}}\)
- step18: Simplify:
\(a=\frac{4\sqrt[13]{19\times 5^{12}\left(361\times 5^{11}\right)^{8}}}{5640625}\)
- step19: Calculate:
\(a=\frac{4\sqrt[13]{19^{17}\times 5^{100}}}{5640625}\)
- step20: Calculate:
\(\left\{ \begin{array}{l}a=\frac{4\sqrt[13]{19^{17}\times 5^{100}}}{5640625}\\b=\frac{\sqrt[13]{361\times 5^{11}}}{5}\end{array}\right.\)
- step21: Check the solution:
\(\left\{ \begin{array}{l}a=\frac{4\sqrt[13]{19^{17}\times 5^{100}}}{5640625}\\b=\frac{\sqrt[13]{361\times 5^{11}}}{5}\end{array}\right.\)
- step22: Rewrite:
\(\left(a,b\right) = \left(\frac{4\sqrt[13]{19^{17}\times 5^{100}}}{5640625},\frac{\sqrt[13]{361\times 5^{11}}}{5}\right)\)
The solution to the system of equations is \( a = \frac{4\sqrt[13]{19^{17} \times 5^{100}}}{5640625} \) and \( b = \frac{\sqrt[13]{361 \times 5^{11}}}{5} \).
Now that we have the values of \( a \) and \( b \), we can substitute them into the exponential function \( f(x) = ab^x \) to find the value of \( f(16.5) \).
Substitute \( a = \frac{4\sqrt[13]{19^{17} \times 5^{100}}}{5640625} \) and \( b = \frac{\sqrt[13]{361 \times 5^{11}}}{5} \) into the function \( f(x) = ab^x \) to find \( f(16.5) \).
Calculate the value by following steps:
- step0: Calculate:
\(\frac{4\sqrt[13]{19^{17}\times 5^{100}}}{5640625}\left(\frac{\sqrt[13]{361\times 5^{11}}}{5}\right)^{16.5}\)
- step1: Convert the expressions:
\(\frac{4\sqrt[13]{19^{17}\times 5^{100}}}{5640625}\left(\frac{\sqrt[13]{361\times 5^{11}}}{5}\right)^{\frac{33}{2}}\)
- step2: Evaluate the power:
\(\frac{4\sqrt[13]{19^{17}\times 5^{100}}}{5640625}\times \frac{\left(\sqrt[13]{361\times 5^{11}}\right)^{\frac{33}{2}}}{5^{\frac{33}{2}}}\)
- step3: Multiply the fractions:
\(\frac{4\sqrt[13]{19^{17}\times 5^{100}}\times \left(\sqrt[13]{361\times 5^{11}}\right)^{\frac{33}{2}}}{5640625\times 5^{\frac{33}{2}}}\)
- step4: Multiply:
\(\frac{4\left(\sqrt[13]{361\times 5^{11}}\right)^{\frac{33}{2}}\sqrt[13]{19^{17}\times 5^{100}}}{5640625\times 5^{\frac{33}{2}}}\)
- step5: Calculate:
\(\frac{1444\times 5^{11}\sqrt[26]{\left(361\times 5^{11}\right)^{7}\left(19^{17}\times 5^{100}\right)^{2}}}{5640625\times 5^{\frac{33}{2}}}\)
- step6: Reduce the fraction:
\(\frac{4\sqrt[26]{\left(361\times 5^{11}\right)^{7}\left(19^{17}\times 5^{100}\right)^{2}}}{5^{\frac{23}{2}}}\)
- step7: Simplify:
\(\frac{4\sqrt[26]{\left(361\times 5^{11}\right)^{7}\left(19^{17}\times 5^{100}\right)^{2}}}{5^{11}\sqrt{5}}\)
- step8: Multiply by the Conjugate:
\(\frac{4\sqrt[26]{\left(361\times 5^{11}\right)^{7}\left(19^{17}\times 5^{100}\right)^{2}}\times \sqrt{5}}{5^{11}\sqrt{5}\times \sqrt{5}}\)
- step9: Multiply the numbers:
\(\frac{4\sqrt[26]{\left(361\times 5^{11}\right)^{7}\left(19^{17}\times 5^{100}\right)^{2}\times 5^{13}}}{5^{11}\sqrt{5}\times \sqrt{5}}\)
- step10: Multiply the numbers:
\(\frac{4\sqrt[26]{\left(361\times 5^{11}\right)^{7}\left(19^{17}\times 5^{100}\right)^{2}\times 5^{13}}}{5^{12}}\)
- step11: Expand the expression:
\(\frac{4\sqrt[26]{19^{48}\times 5^{290}}}{5^{12}}\)
The value of \( f(16.5) \) to the nearest hundredth is approximately 235.18.
Reviewed and approved by the UpStudy tutoring team
Explain
Simplify this solution