If \( f(x) \) is an exponential function of the form of \( y=a b^{x} \) where \( f(4.5)=20 \) and \( f(11)=76 \), then find the value of \( f(16.5) \), to the nearest hundredth.
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
The Deep Dive
To solve for \( f(16.5) \) in the exponential function \( f(x) = a b^x \) given the values \( f(4.5) = 20 \) and \( f(11) = 76 \), we can set up two equations based on those values. 1. From the first point: \[ 20 = a b^{4.5} \quad \text{(1)} \] 2. From the second point: \[ 76 = a b^{11} \quad \text{(2)} \] Next, we can divide equation (2) by equation (1) to eliminate \( a \): \[ \frac{76}{20} = \frac{a b^{11}}{a b^{4.5}} \] This simplifies to: \[ 3.8 = b^{11-4.5} = b^{6.5} \] Now we take both sides to the power of \( \frac{1}{6.5} \): \[ b = 3.8^{\frac{1}{6.5}} \] Calculating \( b \): \[ b \approx 1.66 \] Now we can use this value of \( b \) to find \( a \). We can substitute back into equation (1): \[ 20 = a (1.66)^{4.5} \] Calculating \( (1.66)^{4.5} \): \[ (1.66)^{4.5} \approx 6.83 \] So we have: \[ 20 = a \cdot 6.83 \] Therefore: \[ a \approx \frac{20}{6.83} \approx 2.93 \] Now that we have values for \( a \) and \( b \): \[ a \approx 2.93, \quad b \approx 1.66 \] Now we can find \( f(16.5) \): \[ f(16.5) = a b^{16.5} \approx 2.93 \cdot (1.66)^{16.5} \] Calculating \( (1.66)^{16.5} \): \[ (1.66)^{16.5} \approx 113.3 \] Finally, we calculate: \[ f(16.5) \approx 2.93 \cdot 113.3 \approx 332.86 \] Thus, the value of \( f(16.5) \) to the nearest hundredth is: \[ \boxed{332.86} \]