Question
upstudy study bank question image url

Find the exact value of each of the following under the given conditions. \[ \sin \alpha=\frac{7}{25}, 0<\alpha<\frac{\pi}{2} ; \cos \beta=\frac{8 \sqrt{89}}{89},-\frac{\pi}{2}<\beta<0 \] \( \begin{array}{llll}\text { (a) } \sin (\alpha+\beta) & \text { (b) } \cos (\alpha+\beta) & \text { (c) } \sin (\alpha-\beta) & \text { (d) } \tan (\alpha-\beta)\end{array} \)

Ask by Hardy Frazier. in the United States
Jan 23,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

\[ \sin(\alpha + \beta) = \frac{-64\,\sqrt{89}}{2225} \]

Solution

To find the exact value of \(\sin(\alpha + \beta)\) given: \[ \sin \alpha = \frac{7}{25}, \quad 0 < \alpha < \frac{\pi}{2}, \quad \cos \beta = \frac{8\sqrt{89}}{89}, \quad -\frac{\pi}{2} < \beta < 0, \] we follow these steps: 1. **Find \(\cos \alpha\):** \[ \cos \alpha = \sqrt{1 - \sin^2 \alpha} = \sqrt{1 - \left(\frac{7}{25}\right)^2} = \sqrt{1 - \frac{49}{625}} = \sqrt{\frac{576}{625}} = \frac{24}{25}. \] 2. **Determine \(\sin \beta\):** \(\beta\) is in the fourth quadrant (\(-\frac{\pi}{2} < \beta < 0\)), so \(\sin \beta\) is negative. \[ \sin^2 \beta = 1 - \cos^2 \beta = 1 - \left(\frac{8\sqrt{89}}{89}\right)^2 = 1 - \frac{64 \times 89}{7921} = 1 - \frac{5696}{7921} = \frac{2225}{7921}. \] Taking the square root and considering the sign in the fourth quadrant: \[ \sin \beta = -\frac{\sqrt{2225}}{89} = -\frac{5\sqrt{89}}{89}. \] 3. **Apply the sine addition formula:** \[ \sin(\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta. \] Substitute the known values: \[ = \left(\frac{7}{25}\right)\left(\frac{8\sqrt{89}}{89}\right) + \left(\frac{24}{25}\right)\left(-\frac{5\sqrt{89}}{89}\right) = \frac{56\sqrt{89}}{2225} - \frac{120\sqrt{89}}{2225} = \frac{-64\sqrt{89}}{2225}. \] **Answer:** Problem a Answer: \[ \sin(\alpha + \beta) = \frac{-64\,\sqrt{89}}{2225} \]

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Extra Insights

To find the exact values requested, we will first need to calculate the missing trigonometric values based on the given information. We know that: 1. \(\sin \alpha = \frac{7}{25}\) 2. In quadrant I, we can use the Pythagorean identity \(\sin^2 \alpha + \cos^2 \alpha = 1\) to find \(\cos \alpha\): \[ \cos^2 \alpha = 1 - \sin^2 \alpha = 1 - \left(\frac{7}{25}\right)^2 = 1 - \frac{49}{625} = \frac{576}{625} \] \[ \cos \alpha = \sqrt{\frac{576}{625}} = \frac{24}{25} \] 3. For \(\beta\), we know that \(\cos \beta = \frac{8 \sqrt{89}}{89}\) and \(\beta\) is in quadrant IV, where \(\sin \beta\) can be found using the identity \(\sin^2 \beta + \cos^2 \beta = 1\): \[ \sin^2 \beta = 1 - \cos^2 \beta = 1 - \left( \frac{8 \sqrt{89}}{89} \right)^2 = 1 - \frac{64 \cdot 89}{89^2} = \frac{89^2 - 64 \cdot 89}{89^2} = \frac{89(89 - 64)}{89^2} = \frac{89 \cdot 25}{89^2} = \frac{25}{89} \] Since \(\beta\) is in the fourth quadrant: \[ \sin \beta = -\sqrt{\frac{25}{89}} = -\frac{5}{\sqrt{89}} \] Now we have: - \(\sin \alpha = \frac{7}{25}\) - \(\cos \alpha = \frac{24}{25}\) - \(\sin \beta = -\frac{5}{\sqrt{89}}\) - \(\cos \beta = \frac{8 \sqrt{89}}{89}\) Now, we can compute the required values using the sine and cosine sum and difference formulas. **(a) \(\sin(\alpha + \beta)\)**: \[ \sin(\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta \] \[ = \left(\frac{7}{25}\right) \left(\frac{8 \sqrt{89}}{89}\right) + \left(\frac{24}{25}\right) \left(-\frac{5}{\sqrt{89}}\right) \] \[ = \frac{56 \sqrt{89}}{2225} - \frac{120}{25 \sqrt{89}} = \frac{56 \sqrt{89}}{2225} - \frac{480}{2225} = \frac{56 \sqrt{89} - 480}{2225} \] **(b) \(\cos(\alpha + \beta)\)**: \[ \cos(\alpha + \beta) = \cos \alpha \cos \beta - \sin \alpha \sin \beta \] \[ = \left(\frac{24}{25}\right) \left(\frac{8 \sqrt{89}}{89}\right) - \left(\frac{7}{25}\right) \left(-\frac{5}{\sqrt{89}}\right) \] \[ = \frac{192 \sqrt{89}}{2225} + \frac{35}{25 \sqrt{89}} = \frac{192 \sqrt{89}}{2225} + \frac{35 \sqrt{89}}{2225} = \frac{(192 + 35)\sqrt{89}}{2225} = \frac{227 \sqrt{89}}{2225} \] **(c) \(\sin(\alpha - \beta)\)**: \[ \sin(\alpha - \beta) = \sin \alpha \cos \beta - \cos \alpha \sin \beta \] \[ = \left(\frac{7}{25}\right) \left(\frac{8 \sqrt{89}}{89}\right) - \left(\frac{24}{25}\right) \left(-\frac{5}{\sqrt{89}}\right) \] \[ = \frac{56 \sqrt{89}}{2225

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy