Find the exact value of each of the following under the given conditions. \[ \sin \alpha=\frac{7}{25}, 0<\alpha<\frac{\pi}{2} ; \cos \beta=\frac{8 \sqrt{89}}{89},-\frac{\pi}{2}<\beta<0 \] \( \begin{array}{llll}\text { (a) } \sin (\alpha+\beta) & \text { (b) } \cos (\alpha+\beta) & \text { (c) } \sin (\alpha-\beta) & \text { (d) } \tan (\alpha-\beta)\end{array} \)
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Extra Insights
To find the exact values requested, we will first need to calculate the missing trigonometric values based on the given information. We know that: 1. \(\sin \alpha = \frac{7}{25}\) 2. In quadrant I, we can use the Pythagorean identity \(\sin^2 \alpha + \cos^2 \alpha = 1\) to find \(\cos \alpha\): \[ \cos^2 \alpha = 1 - \sin^2 \alpha = 1 - \left(\frac{7}{25}\right)^2 = 1 - \frac{49}{625} = \frac{576}{625} \] \[ \cos \alpha = \sqrt{\frac{576}{625}} = \frac{24}{25} \] 3. For \(\beta\), we know that \(\cos \beta = \frac{8 \sqrt{89}}{89}\) and \(\beta\) is in quadrant IV, where \(\sin \beta\) can be found using the identity \(\sin^2 \beta + \cos^2 \beta = 1\): \[ \sin^2 \beta = 1 - \cos^2 \beta = 1 - \left( \frac{8 \sqrt{89}}{89} \right)^2 = 1 - \frac{64 \cdot 89}{89^2} = \frac{89^2 - 64 \cdot 89}{89^2} = \frac{89(89 - 64)}{89^2} = \frac{89 \cdot 25}{89^2} = \frac{25}{89} \] Since \(\beta\) is in the fourth quadrant: \[ \sin \beta = -\sqrt{\frac{25}{89}} = -\frac{5}{\sqrt{89}} \] Now we have: - \(\sin \alpha = \frac{7}{25}\) - \(\cos \alpha = \frac{24}{25}\) - \(\sin \beta = -\frac{5}{\sqrt{89}}\) - \(\cos \beta = \frac{8 \sqrt{89}}{89}\) Now, we can compute the required values using the sine and cosine sum and difference formulas. **(a) \(\sin(\alpha + \beta)\)**: \[ \sin(\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta \] \[ = \left(\frac{7}{25}\right) \left(\frac{8 \sqrt{89}}{89}\right) + \left(\frac{24}{25}\right) \left(-\frac{5}{\sqrt{89}}\right) \] \[ = \frac{56 \sqrt{89}}{2225} - \frac{120}{25 \sqrt{89}} = \frac{56 \sqrt{89}}{2225} - \frac{480}{2225} = \frac{56 \sqrt{89} - 480}{2225} \] **(b) \(\cos(\alpha + \beta)\)**: \[ \cos(\alpha + \beta) = \cos \alpha \cos \beta - \sin \alpha \sin \beta \] \[ = \left(\frac{24}{25}\right) \left(\frac{8 \sqrt{89}}{89}\right) - \left(\frac{7}{25}\right) \left(-\frac{5}{\sqrt{89}}\right) \] \[ = \frac{192 \sqrt{89}}{2225} + \frac{35}{25 \sqrt{89}} = \frac{192 \sqrt{89}}{2225} + \frac{35 \sqrt{89}}{2225} = \frac{(192 + 35)\sqrt{89}}{2225} = \frac{227 \sqrt{89}}{2225} \] **(c) \(\sin(\alpha - \beta)\)**: \[ \sin(\alpha - \beta) = \sin \alpha \cos \beta - \cos \alpha \sin \beta \] \[ = \left(\frac{7}{25}\right) \left(\frac{8 \sqrt{89}}{89}\right) - \left(\frac{24}{25}\right) \left(-\frac{5}{\sqrt{89}}\right) \] \[ = \frac{56 \sqrt{89}}{2225