Pregunta
upstudy study bank question image url

Find the exact value of each of the following under the given conditions. \[ \sin \alpha=\frac{7}{25}, 0<\alpha<\frac{\pi}{2} ; \cos \beta=\frac{8 \sqrt{89}}{89},-\frac{\pi}{2}<\beta<0 \] \( \begin{array}{llll}\text { (a) } \sin (\alpha+\beta) & \text { (b) } \cos (\alpha+\beta) & \text { (c) } \sin (\alpha-\beta) & \text { (d) } \tan (\alpha-\beta)\end{array} \)

Ask by Hardy Frazier. in the United States
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

\[ \sin(\alpha + \beta) = \frac{-64\,\sqrt{89}}{2225} \]

Solución

To find the exact value of \(\sin(\alpha + \beta)\) given: \[ \sin \alpha = \frac{7}{25}, \quad 0 < \alpha < \frac{\pi}{2}, \quad \cos \beta = \frac{8\sqrt{89}}{89}, \quad -\frac{\pi}{2} < \beta < 0, \] we follow these steps: 1. **Find \(\cos \alpha\):** \[ \cos \alpha = \sqrt{1 - \sin^2 \alpha} = \sqrt{1 - \left(\frac{7}{25}\right)^2} = \sqrt{1 - \frac{49}{625}} = \sqrt{\frac{576}{625}} = \frac{24}{25}. \] 2. **Determine \(\sin \beta\):** \(\beta\) is in the fourth quadrant (\(-\frac{\pi}{2} < \beta < 0\)), so \(\sin \beta\) is negative. \[ \sin^2 \beta = 1 - \cos^2 \beta = 1 - \left(\frac{8\sqrt{89}}{89}\right)^2 = 1 - \frac{64 \times 89}{7921} = 1 - \frac{5696}{7921} = \frac{2225}{7921}. \] Taking the square root and considering the sign in the fourth quadrant: \[ \sin \beta = -\frac{\sqrt{2225}}{89} = -\frac{5\sqrt{89}}{89}. \] 3. **Apply the sine addition formula:** \[ \sin(\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta. \] Substitute the known values: \[ = \left(\frac{7}{25}\right)\left(\frac{8\sqrt{89}}{89}\right) + \left(\frac{24}{25}\right)\left(-\frac{5\sqrt{89}}{89}\right) = \frac{56\sqrt{89}}{2225} - \frac{120\sqrt{89}}{2225} = \frac{-64\sqrt{89}}{2225}. \] **Answer:** Problem a Answer: \[ \sin(\alpha + \beta) = \frac{-64\,\sqrt{89}}{2225} \]

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

To find the exact values requested, we will first need to calculate the missing trigonometric values based on the given information. We know that: 1. \(\sin \alpha = \frac{7}{25}\) 2. In quadrant I, we can use the Pythagorean identity \(\sin^2 \alpha + \cos^2 \alpha = 1\) to find \(\cos \alpha\): \[ \cos^2 \alpha = 1 - \sin^2 \alpha = 1 - \left(\frac{7}{25}\right)^2 = 1 - \frac{49}{625} = \frac{576}{625} \] \[ \cos \alpha = \sqrt{\frac{576}{625}} = \frac{24}{25} \] 3. For \(\beta\), we know that \(\cos \beta = \frac{8 \sqrt{89}}{89}\) and \(\beta\) is in quadrant IV, where \(\sin \beta\) can be found using the identity \(\sin^2 \beta + \cos^2 \beta = 1\): \[ \sin^2 \beta = 1 - \cos^2 \beta = 1 - \left( \frac{8 \sqrt{89}}{89} \right)^2 = 1 - \frac{64 \cdot 89}{89^2} = \frac{89^2 - 64 \cdot 89}{89^2} = \frac{89(89 - 64)}{89^2} = \frac{89 \cdot 25}{89^2} = \frac{25}{89} \] Since \(\beta\) is in the fourth quadrant: \[ \sin \beta = -\sqrt{\frac{25}{89}} = -\frac{5}{\sqrt{89}} \] Now we have: - \(\sin \alpha = \frac{7}{25}\) - \(\cos \alpha = \frac{24}{25}\) - \(\sin \beta = -\frac{5}{\sqrt{89}}\) - \(\cos \beta = \frac{8 \sqrt{89}}{89}\) Now, we can compute the required values using the sine and cosine sum and difference formulas. **(a) \(\sin(\alpha + \beta)\)**: \[ \sin(\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta \] \[ = \left(\frac{7}{25}\right) \left(\frac{8 \sqrt{89}}{89}\right) + \left(\frac{24}{25}\right) \left(-\frac{5}{\sqrt{89}}\right) \] \[ = \frac{56 \sqrt{89}}{2225} - \frac{120}{25 \sqrt{89}} = \frac{56 \sqrt{89}}{2225} - \frac{480}{2225} = \frac{56 \sqrt{89} - 480}{2225} \] **(b) \(\cos(\alpha + \beta)\)**: \[ \cos(\alpha + \beta) = \cos \alpha \cos \beta - \sin \alpha \sin \beta \] \[ = \left(\frac{24}{25}\right) \left(\frac{8 \sqrt{89}}{89}\right) - \left(\frac{7}{25}\right) \left(-\frac{5}{\sqrt{89}}\right) \] \[ = \frac{192 \sqrt{89}}{2225} + \frac{35}{25 \sqrt{89}} = \frac{192 \sqrt{89}}{2225} + \frac{35 \sqrt{89}}{2225} = \frac{(192 + 35)\sqrt{89}}{2225} = \frac{227 \sqrt{89}}{2225} \] **(c) \(\sin(\alpha - \beta)\)**: \[ \sin(\alpha - \beta) = \sin \alpha \cos \beta - \cos \alpha \sin \beta \] \[ = \left(\frac{7}{25}\right) \left(\frac{8 \sqrt{89}}{89}\right) - \left(\frac{24}{25}\right) \left(-\frac{5}{\sqrt{89}}\right) \] \[ = \frac{56 \sqrt{89}}{2225

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad