Question
Question 29 Simplify A) \( x^{7} \cdot x^{5}=\square \) B) \( \left(x^{7}\right)^{5}=\square \) Question Help: \( \square \) Video \( \square \) Message insti Submit Question
Ask by O'Quinn Collins. in the United States
Jan 26,2025
Real Tutor Solution
Tutor-Verified Answer
Answer
A) \( x^{7} \cdot x^{5} = x^{12} \)
B) \( \left(x^{7}\right)^{5} = x^{35} \)
Solution
Sure, let's simplify each expression step by step.
### **A) \( x^{7} \cdot x^{5} = \square \)**
**Step 1:** When multiplying expressions with the same base, you add the exponents.
\[
x^{7} \cdot x^{5} = x^{7 + 5}
\]
**Step 2:** Add the exponents.
\[
x^{7 + 5} = x^{12}
\]
**Simplified Form:**
\[
x^{7} \cdot x^{5} = x^{12}
\]
---
### **B) \( \left(x^{7}\right)^{5} = \square \)**
**Step 1:** When raising a power to another power, you multiply the exponents.
\[
\left(x^{7}\right)^{5} = x^{7 \times 5}
\]
**Step 2:** Multiply the exponents.
\[
x^{7 \times 5} = x^{35}
\]
**Simplified Form:**
\[
\left(x^{7}\right)^{5} = x^{35}
\]
---
### **Final Answers:**
- **A)** \( x^{7} \cdot x^{5} = x^{12} \)
- **B)** \( \left(x^{7}\right)^{5} = x^{35} \)
If you have any more questions or need further clarification, feel free to ask!
Reviewed and approved by the UpStudy tutoring team
Like
error msg
Explain
Simplify this solution
Bonus Knowledge
A) To simplify \( x^{7} \cdot x^{5} \), you add the exponents since the bases are the same. Thus, \( x^{7} \cdot x^{5} = x^{7 + 5} = x^{12} \). B) For \( \left(x^{7}\right)^{5} \), you multiply the exponents. This means \( \left(x^{7}\right)^{5} = x^{7 \cdot 5} = x^{35} \).