Question
For \( f(x)=\sqrt{x} \) and \( g(x)=x+6 \), find the following functions. a. \( (f \circ g)(x) ; b .(g \circ f)(x) \); c. \( (f \circ g)(3) \); d. \( (g \circ f)(3) \) a. \( (f \circ g)(x)=\square \) (Simplify your answer.) b. \( (g \circ f)(x)=\square \) \( ( \) Simplify your answer. \( ) \) c. \( (f \circ g)(3)=\square \) (Simplify your answer.) d. \( (g \circ f)(3)=\square \) (Simplify your answer.)
Ask by Carroll Mccoy. in the United States
Jan 24,2025
Real Tutor Solution
Tutor-Verified Answer
Answer
a. \( (f \circ g)(x) = \sqrt{x + 6} \)
b. \( (g \circ f)(x) = \sqrt{x} + 6 \)
c. \( (f \circ g)(3) = 3 \)
d. \( (g \circ f)(3) = \sqrt{3} + 6 \) (approximately 7.732)
Solution
Let's evaluate each part step by step using the given functions \( f(x) = \sqrt{x} \) and \( g(x) = x + 6 \).
### a. \( (f \circ g)(x) \)
\[
(f \circ g)(x) = f(g(x)) = f(x + 6) = \sqrt{x + 6}
\]
**Answer:** \( (f \circ g)(x) = \sqrt{x + 6} \)
### b. \( (g \circ f)(x) \)
\[
(g \circ f)(x) = g(f(x)) = g(\sqrt{x}) = \sqrt{x} + 6
\]
**Answer:** \( (g \circ f)(x) = \sqrt{x} + 6 \)
### c. \( (f \circ g)(3) \)
\[
(f \circ g)(3) = \sqrt{3 + 6} = \sqrt{9} = 3
\]
**Answer:** \( (f \circ g)(3) = 3 \)
### d. \( (g \circ f)(3) \)
\[
(g \circ f)(3) = \sqrt{3} + 6 \approx 1.732 + 6 = 7.732
\]
**Answer:** \( (g \circ f)(3) = \sqrt{3} + 6 \) (approximately 7.732)
Reviewed and approved by the UpStudy tutoring team
Like
error msg
Explain
Simplify this solution
The Deep Dive
To find the required functions, let's break them down step by step: a. \( (f \circ g)(x) = f(g(x)) = f(x + 6) = \sqrt{x + 6} \) b. \( (g \circ f)(x) = g(f(x)) = g(\sqrt{x}) = \sqrt{x} + 6 \) c. \( (f \circ g)(3) = \sqrt{3 + 6} = \sqrt{9} = 3 \) d. \( (g \circ f)(3) = \sqrt{3} + 6 \approx 1.732 + 6 = 7.732 \) So, the final answers are: a. \( (f \circ g)(x) = \sqrt{x + 6} \) b. \( (g \circ f)(x) = \sqrt{x} + 6 \) c. \( (f \circ g)(3) = 3 \) d. \( (g \circ f)(3) = \sqrt{3} + 6 \)