Question
1.3 More on Functions and craphs \[ \text { Evaluate the piecewise function at the given values of the independent variable. } \] \[ (x)=\left\{\begin{array}{ll}\frac{x^{2}-36}{x-6} & \text { if } x \neq 6 \\ 2 & \text { if } x=6\end{array}\right. \] \( \begin{array}{lll}\text { (a) } h(3) & \text { (b) } h(0) & \text { (c) } h(6)\end{array} \)
Ask by Evans Smith. in the United States
Jan 25,2025
Real Tutor Solution
Tutor-Verified Answer
Answer
\( h(3) = 9 \), \( h(0) = 6 \), and \( h(6) = 2 \).
Solution
To evaluate the piecewise function \( h(x) \) at the given values, let's first understand the function and then substitute the specific values.
### Given Function:
\[
h(x) =
\begin{cases}
\displaystyle \frac{x^{2} - 36}{x - 6} & \text{if } x \neq 6 \\
2 & \text{if } x = 6
\end{cases}
\]
### Simplifying the Function for \( x \neq 6 \):
For \( x \neq 6 \),
\[
\frac{x^{2} - 36}{x - 6} = \frac{(x - 6)(x + 6)}{x - 6}
\]
As long as \( x \neq 6 \), you can cancel out the \( (x - 6) \) terms:
\[
h(x) = x + 6
\]
### Evaluations:
Now, let's evaluate \( h(x) \) at the specified values.
#### (a) \( h(3) \)
Since \( 3 \neq 6 \), use the simplified expression:
\[
h(3) = 3 + 6 = 9
\]
#### (b) \( h(0) \)
Since \( 0 \neq 6 \), use the simplified expression:
\[
h(0) = 0 + 6 = 6
\]
#### (c) \( h(6) \)
Here, \( x = 6 \), so we use the piecewise definition directly:
\[
h(6) = 2
\]
### Summary of Results:
- **(a) \( h(3) = 9 \)**
- **(b) \( h(0) = 6 \)**
- **(c) \( h(6) = 2 \)**
Reviewed and approved by the UpStudy tutoring team
Like
error msg
Explain
Simplify this solution
Beyond the Answer
To evaluate the piecewise function at the given values, let's break it down step by step! For \(h(3)\): Since \(3 \neq 6\), we use the first part of the function: \[ h(3) = \frac{3^2 - 36}{3 - 6} = \frac{9 - 36}{-3} = \frac{-27}{-3} = 9. \] For \(h(0)\): Since \(0 \neq 6\), we again use the first part of the function: \[ h(0) = \frac{0^2 - 36}{0 - 6} = \frac{0 - 36}{-6} = \frac{-36}{-6} = 6. \] For \(h(6)\): Here, since \(6 = 6\), we use the second part of the function: \[ h(6) = 2. \] So, the evaluations yield: (a) \(h(3) = 9\), (b) \(h(0) = 6\), (c) \(h(6) = 2\).