1.3 More on Functions and craphs \[ \text { Evaluate the piecewise function at the given values of the independent variable. } \] \[ (x)=\left\{\begin{array}{ll}\frac{x^{2}-36}{x-6} & \text { if } x \neq 6 \\ 2 & \text { if } x=6\end{array}\right. \] \( \begin{array}{lll}\text { (a) } h(3) & \text { (b) } h(0) & \text { (c) } h(6)\end{array} \)
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Beyond the Answer
To evaluate the piecewise function at the given values, let's break it down step by step! For \(h(3)\): Since \(3 \neq 6\), we use the first part of the function: \[ h(3) = \frac{3^2 - 36}{3 - 6} = \frac{9 - 36}{-3} = \frac{-27}{-3} = 9. \] For \(h(0)\): Since \(0 \neq 6\), we again use the first part of the function: \[ h(0) = \frac{0^2 - 36}{0 - 6} = \frac{0 - 36}{-6} = \frac{-36}{-6} = 6. \] For \(h(6)\): Here, since \(6 = 6\), we use the second part of the function: \[ h(6) = 2. \] So, the evaluations yield: (a) \(h(3) = 9\), (b) \(h(0) = 6\), (c) \(h(6) = 2\).