Find the equation of the sphere passing through \( P(-2,3,4) \) and \( Q(6,-1,3) \) with its center at the midpoint of \( P Q \). The standard equation of the sphere is (Simplify your answer.)
Real Tutor Solution
Answer
Solution
Reviewed and approved by the UpStudy tutoring team
Beyond the Answer
To find the equation of the sphere, we first need to determine the midpoint of the points \( P(-2, 3, 4) \) and \( Q(6, -1, 3) \). The midpoint \( M \) can be calculated using the formula: \[ M = \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}, \frac{z_1 + z_2}{2}\right) \] Substituting the coordinates of \( P \) and \( Q \): \[ M = \left(\frac{-2 + 6}{2}, \frac{3 + (-1)}{2}, \frac{4 + 3}{2}\right) = \left(\frac{4}{2}, \frac{2}{2}, \frac{7}{2}\right) = (2, 1, 3.5) \] Next, we find the radius \( r \) of the sphere, which is the distance from the center \( M(2, 1, 3.5) \) to either point \( P \) or \( Q \). We will calculate the distance from \( M \) to \( P \): \[ r = \sqrt{(x_M - x_P)^2 + (y_M - y_P)^2 + (z_M - z_P)^2} \] Calculating the distance: \[ r = \sqrt{(2 - (-2))^2 + (1 - 3)^2 + (3.5 - 4)^2} = \sqrt{(2 + 2)^2 + (1 - 3)^2 + (3.5 - 4)^2} \] \[ = \sqrt{(4)^2 + (-2)^2 + (-0.5)^2} = \sqrt{16 + 4 + 0.25} = \sqrt{20.25} = \frac{\sqrt{81}}{2} = \frac{9}{2} \] The standard equation of a sphere with center \( (h, k, l) \) and radius \( r \) is given by: \[ (x - h)^2 + (y - k)^2 + (z - l)^2 = r^2 \] Substituting in \( h = 2, k = 1, l = 3.5 \) and \( r = \frac{9}{2} \): \[ (x - 2)^2 + (y - 1)^2 + \left(z - 3.5\right)^2 = \left(\frac{9}{2}\right)^2 \] Calculating \( \left(\frac{9}{2}\right)^2 \): \[ \left(\frac{9}{2}\right)^2 = \frac{81}{4} \] Putting everything together, the equation of the sphere is: \[ (x - 2)^2 + (y - 1)^2 + \left(z - 3.5\right)^2 = \frac{81}{4} \] So, the final simplified equation of the sphere is: \[ (x - 2)^2 + (y - 1)^2 + \left(z - 3.5\right)^2 = \frac{81}{4} \]