Pregunta
upstudy study bank question image url

Find the equation of the sphere passing through \( P(-2,3,4) \) and \( Q(6,-1,3) \) with its center at the midpoint of \( P Q \). The standard equation of the sphere is (Simplify your answer.)

Ask by Reese Pritchard. in the United States
Jan 22,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The equation of the sphere is \( (x - 2)^2 + (y - 1)^2 + (z - 3.5)^2 = 20.25 \).

Solución

To find the equation of the sphere that passes through points \( P(-2,3,4) \) and \( Q(6,-1,3) \) with its center at the midpoint of \( P \) and \( Q \), we can follow these steps: 1. **Find the midpoint of points \( P \) and \( Q \)**: The midpoint \( M \) of two points \( P(x_1, y_1, z_1) \) and \( Q(x_2, y_2, z_2) \) is given by: \[ M = \left( \frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}, \frac{z_1 + z_2}{2} \right) \] 2. **Calculate the coordinates of the midpoint \( M \)**: \[ M = \left( \frac{-2 + 6}{2}, \frac{3 + (-1)}{2}, \frac{4 + 3}{2} \right) \] 3. **Find the radius of the sphere**: The radius \( r \) of the sphere is the distance from the center \( M \) to either point \( P \) or \( Q \). The distance \( d \) between two points \( (x_1, y_1, z_1) \) and \( (x_2, y_2, z_2) \) is given by: \[ d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2} \] 4. **Write the standard equation of the sphere**: The standard equation of a sphere with center \( (h, k, l) \) and radius \( r \) is: \[ (x - h)^2 + (y - k)^2 + (z - l)^2 = r^2 \] Now, let's perform the calculations step by step. ### Step 1: Calculate the midpoint \( M \) \[ M = \left( \frac{-2 + 6}{2}, \frac{3 - 1}{2}, \frac{4 + 3}{2} \right) = \left( \frac{4}{2}, \frac{2}{2}, \frac{7}{2} \right) = (2, 1, 3.5) \] ### Step 2: Calculate the radius \( r \) Using point \( P(-2, 3, 4) \): \[ r = \sqrt{(2 - (-2))^2 + (1 - 3)^2 + (3.5 - 4)^2} \] Calculating each term: - \( (2 - (-2))^2 = (2 + 2)^2 = 4^2 = 16 \) - \( (1 - 3)^2 = (-2)^2 = 4 \) - \( (3.5 - 4)^2 = (-0.5)^2 = 0.25 \) Now, summing these: \[ r^2 = 16 + 4 + 0.25 = 20.25 \] ### Step 3: Write the equation of the sphere The center \( (h, k, l) = (2, 1, 3.5) \) and \( r^2 = 20.25 \). Thus, the equation of the sphere is: \[ (x - 2)^2 + (y - 1)^2 + (z - 3.5)^2 = 20.25 \] Now, let's simplify the equation. ### Final Equation of the Sphere The final equation of the sphere is: \[ (x - 2)^2 + (y - 1)^2 + (z - 3.5)^2 = 20.25 \] This is the standard form of the equation of the sphere.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To find the equation of the sphere, we first need to determine the midpoint of the points \( P(-2, 3, 4) \) and \( Q(6, -1, 3) \). The midpoint \( M \) can be calculated using the formula: \[ M = \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}, \frac{z_1 + z_2}{2}\right) \] Substituting the coordinates of \( P \) and \( Q \): \[ M = \left(\frac{-2 + 6}{2}, \frac{3 + (-1)}{2}, \frac{4 + 3}{2}\right) = \left(\frac{4}{2}, \frac{2}{2}, \frac{7}{2}\right) = (2, 1, 3.5) \] Next, we find the radius \( r \) of the sphere, which is the distance from the center \( M(2, 1, 3.5) \) to either point \( P \) or \( Q \). We will calculate the distance from \( M \) to \( P \): \[ r = \sqrt{(x_M - x_P)^2 + (y_M - y_P)^2 + (z_M - z_P)^2} \] Calculating the distance: \[ r = \sqrt{(2 - (-2))^2 + (1 - 3)^2 + (3.5 - 4)^2} = \sqrt{(2 + 2)^2 + (1 - 3)^2 + (3.5 - 4)^2} \] \[ = \sqrt{(4)^2 + (-2)^2 + (-0.5)^2} = \sqrt{16 + 4 + 0.25} = \sqrt{20.25} = \frac{\sqrt{81}}{2} = \frac{9}{2} \] The standard equation of a sphere with center \( (h, k, l) \) and radius \( r \) is given by: \[ (x - h)^2 + (y - k)^2 + (z - l)^2 = r^2 \] Substituting in \( h = 2, k = 1, l = 3.5 \) and \( r = \frac{9}{2} \): \[ (x - 2)^2 + (y - 1)^2 + \left(z - 3.5\right)^2 = \left(\frac{9}{2}\right)^2 \] Calculating \( \left(\frac{9}{2}\right)^2 \): \[ \left(\frac{9}{2}\right)^2 = \frac{81}{4} \] Putting everything together, the equation of the sphere is: \[ (x - 2)^2 + (y - 1)^2 + \left(z - 3.5\right)^2 = \frac{81}{4} \] So, the final simplified equation of the sphere is: \[ (x - 2)^2 + (y - 1)^2 + \left(z - 3.5\right)^2 = \frac{81}{4} \]

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad