Question
upstudy study bank question image url

4 Give the compass bearing, in degrees, for these directions. \( \begin{array}{llll}\text { a West (W) } & \text { b East (E) } & \text { c } & \text { North (N) } \\ \text { e NW } & \text { f } & \text { SE } & \text { g SW }\end{array} \)

Ask by Hilton Mccoy. in Australia
Feb 04,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

| Direction | Compass Bearing (Degrees) | |-----------|---------------------------| | West (W) | 270° | | East (E) | 90° | | North (N) | 0° / 360° | | Northwest (NW) | 315° | | Southeast (SE) | 135° | | Southwest (SW) | 225° |

Solution

Sign in to Unlock Answers for Free!

A Learning Platform Trusted by Millions of Real Students and Teachers.

star-icon Unlock

Reviewed and approved by the UpStudy tutoring team

Mind Expander

When it comes to compass bearings, it’s quite a fun navigation game! Here are the degrees for each direction: - **West (W)** is at 270 degrees. - **East (E)** is at 90 degrees. - **North (N)** is at 0 degrees (or 360 degrees since they circle back). - **Northwest (NW)** is at 315 degrees. - **Southeast (SE)** sits at 135 degrees. - **Southwest (SW)** is at 225 degrees. Now you are ready to ace any map adventure!

Related Questions

Exercice 5: 1. On considère l'algorithme ci-contre a. On entre 7 pour \( x_{\mathrm{B}} \) et 17 pour \( y_{\mathrm{B}} \). Quelle est la valeur affichée en sortie? \( \sqrt{(x B+1)^{2}+(y B-2)^{2}} \) Variables Entrée Traitement Sortie \( x_{\mathrm{B}}, y_{\mathrm{B}} \) et \( d \) sont des nombres reels Demander les valeurs de \( x_{8} \) et \( y_{B} \) Affecter à \( d \) la valeur \( \sqrt{\left(x_{\mathrm{B}}+1\right)^{2}+\left(y_{\mathrm{B}}-2\right)^{2}} \) Afficher \( d \) pour \( x B=7 \) et \( y B=17 \) cela donne 17 b. Quel est le rôle de cet algorithme ? 2. On se place dans un repère orthonormé et on considère le cercle \( (\mathcal{C}) \) de centre \( \mathrm{A}(-1 ; 2) \) et de rayon 5 . a. Le point \( E \) de coordonnées \( (7 ; 17) \) appartient-il au cercle ( \( \mathcal{C} \) ) ? b. Modifier l'algorithme précédent pour qu'il affiche «oui» si le point \( \mathrm{B}\left(x_{\mathrm{B}} ; y_{\mathrm{B}}\right) \) appartient au cercle ( \( \mathcal{C} \) ) et « non» si le point B n'appartient pas à ce cercle. Exercice 6: Un automobiliste roule d'abord à \( 90 \mathrm{~km} / \mathrm{h} \) pendant deux heures, puis roule à \( 120 \mathrm{~km} / \mathrm{h} \). On veut élaborer le programme d'une fonction retournant la distance qu'il a parcourue, en kilomètres, au bout d'un temps t exprimé en heures. 1. Calculer la distance parcourue dans chacun des cas suivants : a. \( \mathrm{t}=1,5 \mathrm{~h} \) b. \( \mathrm{t}=3,5 \mathrm{~h} \)
Geometry France Feb 04, 2025
Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy