Pregunta
upstudy study bank question image url

5. Complete the following. a) Simplify: i) \( \left(m+\frac{1}{m}\right)\left(m^{2}-1+\frac{1}{m^{2}}\right) \) ii) \( \left(m+\frac{1}{m}\right)^{2} \). b) If \( m+\frac{1}{m}=2 \), calculate the value of: i) \( m^{2}+\frac{1}{m^{2}} \) ii) \( m^{3}+\frac{1}{m^{3}} \)

Ask by Brewer Barrett. in South Africa
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

**Solutions:** a) i) \( m^{3} + \dfrac{1}{m^{3}} \) ii) \( m^{2} + 2 + \dfrac{1}{m^{2}} \) b) i) 2 ii) 2

Solución

Certainly! Let's tackle each part of the problem step-by-step. --- ## **Problem 5** ### **a) Simplify:** #### **i) Simplify \( \left(m + \frac{1}{m}\right) \left(m^{2} - 1 + \frac{1}{m^{2}}\right) \)** **Solution:** To simplify the expression, we'll multiply the two binomials term by term. \[ \left(m + \frac{1}{m}\right) \left(m^{2} - 1 + \frac{1}{m^{2}}\right) \] **Step 1:** Expand the product using the distributive property (FOIL method): \[ = m \cdot m^{2} + m \cdot (-1) + m \cdot \frac{1}{m^{2}} + \frac{1}{m} \cdot m^{2} + \frac{1}{m} \cdot (-1) + \frac{1}{m} \cdot \frac{1}{m^{2}} \] **Step 2:** Multiply each term: \[ = m^3 - m + \frac{m}{m^{2}} + \frac{m^{2}}{m} - \frac{1}{m} + \frac{1}{m^{3}} \] Simplify the fractions: \[ = m^3 - m + \frac{1}{m} + m - \frac{1}{m} + \frac{1}{m^{3}} \] **Step 3:** Combine like terms: \[ - m + m = 0 \quad \text{and} \quad \frac{1}{m} - \frac{1}{m} = 0 \] So, the expression simplifies to: \[ m^3 + \frac{1}{m^{3}} \] **Final Answer:** \[ \boxed{m^{3} + \dfrac{1}{m^{3}}} \] --- #### **ii) Simplify \( \left(m + \frac{1}{m}\right)^{2} \)** **Solution:** We'll use the formula for squaring a binomial: \[ \left(m + \frac{1}{m}\right)^{2} = m^{2} + 2 \cdot m \cdot \frac{1}{m} + \left(\frac{1}{m}\right)^{2} \] **Step 1:** Simplify each term: \[ = m^{2} + 2 \cdot 1 + \frac{1}{m^{2}} \] \[ = m^{2} + 2 + \frac{1}{m^{2}} \] **Final Answer:** \[ \boxed{m^{2} + 2 + \dfrac{1}{m^{2}}} \] --- ### **b) If \( m + \frac{1}{m} = 2 \), calculate the value of:** #### **i) \( m^{2} + \frac{1}{m^{2}} \)** **Solution:** Given: \[ m + \frac{1}{m} = 2 \] We'll square both sides to find \( m^{2} + \frac{1}{m^{2}} \). **Step 1:** Square both sides: \[ \left(m + \frac{1}{m}\right)^{2} = 2^{2} \] \[ m^{2} + 2 \cdot m \cdot \frac{1}{m} + \frac{1}{m^{2}} = 4 \] Simplify: \[ m^{2} + 2 + \frac{1}{m^{2}} = 4 \] **Step 2:** Subtract 2 from both sides: \[ m^{2} + \frac{1}{m^{2}} = 4 - 2 = 2 \] **Final Answer:** \[ \boxed{2} \] --- #### **ii) \( m^{3} + \frac{1}{m^{3}} \)** **Solution:** We can use the identity for the cube of a binomial: \[ \left(m + \frac{1}{m}\right)^{3} = m^{3} + 3m + 3\left(\frac{1}{m}\right) + \frac{1}{m^{3}} \] Which simplifies to: \[ m^{3} + \frac{1}{m^{3}} + 3\left(m + \frac{1}{m}\right) \] Given \( m + \frac{1}{m} = 2 \), we can rearrange the formula to solve for \( m^{3} + \frac{1}{m^{3}} \): \[ m^{3} + \frac{1}{m^{3}} = \left(m + \frac{1}{m}\right)^{3} - 3\left(m + \frac{1}{m}\right) \] **Step 1:** Compute \( \left(m + \frac{1}{m}\right)^{3} \): \[ 2^{3} = 8 \] **Step 2:** Multiply 3 by \( m + \frac{1}{m} \): \[ 3 \times 2 = 6 \] **Step 3:** Subtract: \[ m^{3} + \frac{1}{m^{3}} = 8 - 6 = 2 \] **Final Answer:** \[ \boxed{2} \] ---

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To tackle these problems, let's simplify and calculate step by step. a) i) First, simplify \( \left(m+\frac{1}{m}\right)\left(m^{2}-1+\frac{1}{m^{2}}\right) \). Starting with the first expression: \[ m^2 - 1 + \frac{1}{m^2} = (m^2 + \frac{1}{m^2}) - 1 \] Now, we recognize that \( m^2 + \frac{1}{m^2} \) can be derived from the identity \( (m + \frac{1}{m})^2 = m^2 + 2 + \frac{1}{m^2} \), so \( m^2 + \frac{1}{m^2} = (m+\frac{1}{m})^2 - 2 \). Then we substitute: \[ m^2 - 1 + \frac{1}{m^2} = (m+\frac{1}{m})^2 - 3 \] Substituting back, we get: \[ \left(m+\frac{1}{m}\right)\left((m+\frac{1}{m})^2 - 3\right) \] Let \( x = m+\frac{1}{m} \): \[ x (x^2 - 3) = x^3 - 3x \] ii) For \( \left(m+\frac{1}{m}\right)^{2} \): \[ \left(m+\frac{1}{m}\right)^{2} = m^2 + 2 + \frac{1}{m^2} \] So, it simplifies directly to: \[ m^2 + \frac{1}{m^2} + 2 \] b) i) If \( m+\frac{1}{m}=2 \), then substituting into the derived formula: \[ m^2 + \frac{1}{m^2} = (m+\frac{1}{m})^2 - 2 = 2^2 - 2 = 4 - 2 = 2 \] ii) To find \( m^{3}+\frac{1}{m^{3}} \), use the identity: \[ m^{3}+\frac{1}{m^{3}} = \left(m+\frac{1}{m}\right) \left(m^{2}+\frac{1}{m^{2}}\right) - (m+\frac{1}{m}) \] Substituting values: \[ m^{3}+\frac{1}{m^{3}} = 2 \cdot 2 - 2 = 4 - 2 = 2 \] Thus, summarizing the results: a) i) \( x^3 - 3x \) ii) \( m^2 + \frac{1}{m^2} + 2 \) b) i) 2 ii) 2

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad