A cube of platinum of edge length 0.034 mm (density \( =21.4 \frac{\mathrm{~g}}{\mathrm{~cm}^{3}} \) ). Round your answer to 2 significant digits. mass: \( \square \mathrm{g} \)
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Bonus Knowledge
To find the mass of the platinum cube, first, we calculate its volume. The volume \( V \) of a cube is given by the formula \( V = \text{edge length}^3 \). For the given edge length of 0.034 mm, we convert it to centimeters: 0.034 mm = 0.0034 cm. Now calculate the volume: \( V = (0.0034 \, \text{cm})^3 = 4.0 \times 10^{-8} \, \text{cm}^3 \). Now, we use the density formula \( \text{mass} = \text{density} \times \text{volume} \). Given the density of platinum is \( 21.4 \, \frac{\mathrm{~g}}{\mathrm{~cm}^{3}} \), \[ \text{mass} = 21.4 \, \frac{\mathrm{~g}}{\mathrm{~cm}^{3}} \times 4.0 \times 10^{-8} \, \text{cm}^3 = 8.56 \times 10^{-7} \, \text{g}. \] Rounding to two significant digits, the mass of the platinum cube is \( 0.00000086 \, \text{g} \) or, expressed in scientific notation, \( 8.6 \times 10^{-7} \, \text{g} \). Thus, the answer is \( \text{mass} = 0.00000086 \, \text{g} \) or \( 8.6 \times 10^{-7} \, \text{g} \).