Question
F3/02/25 Grade 10 Factorise \( \begin{array}{ll}\text { a) } x^{2}-7 x+12 & \text { (h) } 40 x^{2}+6 x y-18 y^{2} \\ \begin{array}{ll}\text { (b) } 2 x^{2}+12 x+18 & \text { (b) } 24 x^{2}-2 x y-y^{2} \\ \text { c) } x^{2}-9 x+20 & \text { (j) } 3 x^{2}+19 x+20 \\ \text { (d) } 3 x^{2}-9 x+24 & \\ \text { (e) } 2 x^{2}+5 x+3 & \\ \text { (f) } 3 x^{2}+4 x-4 & \\ \text { (g) } 5 x^{3} y+25 x^{2} y-30 x y & \end{array}\end{array}> \)
Ask by Reeves Mullins. in South Africa
Feb 03,2025
Real Tutor Solution
Tutor-Verified Answer
Answer
Here are the factorizations:
a) \( x^{2}-7x+12 = (x-4)(x-3) \)
b) \( 2x^{2}+12x+18 = 2(x+3)^{2} \)
c) \( x^{2}-9x+20 = (x-5)(x-4) \)
d) \( 3x^{2}-9x+24 = 3(x^{2}-3x+8) \)
e) \( 2x^{2}+5x+3 = (x+1)(2x+3) \)
f) \( 3x^{2}+4x-4 = (x+2)(3x-2) \)
g) \( 5x^{3}y+25x^{2}y-30xy = 5xy(x-1)(x+6) \)
h) \( 40x^{2}+6xy-18y^{2} = 2(5x-3y)(4x+3y) \)
i) \( 24x^{2}-2xy-y^{2} = (6x+y)(4x-y) \)
j) \( 3x^{2}+19x+20 = (x+5)(3x+4) \)
Solution
Factor the expression by following steps:
- step0: Factor:
\(2x^{2}+12x+18\)
- step1: Factor the expression:
\(2\left(x+3\right)^{2}\)
Factor the expression \( 3 x^{2}-9 x+24 \).
Factor the expression by following steps:
- step0: Factor:
\(3x^{2}-9x+24\)
- step1: Factor the expression:
\(3\left(x^{2}-3x+8\right)\)
Factor the expression \( 3 x^{2}+19 x+20 \).
Factor the expression by following steps:
- step0: Factor:
\(3x^{2}+19x+20\)
- step1: Rewrite the expression:
\(3x^{2}+\left(4+15\right)x+20\)
- step2: Rewrite the expression:
\(3x^{2}+4x+15x+20\)
- step3: Factor the expression:
\(x\left(3x+4\right)+5\left(3x+4\right)\)
- step4: Factor the expression:
\(\left(x+5\right)\left(3x+4\right)\)
Factor the expression \( 2 x^{2}+5 x+3 \).
Factor the expression by following steps:
- step0: Factor:
\(2x^{2}+5x+3\)
- step1: Rewrite the expression:
\(2x^{2}+\left(3+2\right)x+3\)
- step2: Rewrite the expression:
\(2x^{2}+3x+2x+3\)
- step3: Factor the expression:
\(x\left(2x+3\right)+2x+3\)
- step4: Factor the expression:
\(\left(x+1\right)\left(2x+3\right)\)
Factor the expression \( x^{2}-9 x+20 \).
Factor the expression by following steps:
- step0: Factor:
\(x^{2}-9x+20\)
- step1: Rewrite the expression:
\(x^{2}+\left(-4-5\right)x+20\)
- step2: Rewrite the expression:
\(x^{2}-4x-5x+20\)
- step3: Factor the expression:
\(x\left(x-4\right)-5\left(x-4\right)\)
- step4: Factor the expression:
\(\left(x-5\right)\left(x-4\right)\)
Factor the expression \( x^{2}-7 x+12 \).
Factor the expression by following steps:
- step0: Factor:
\(x^{2}-7x+12\)
- step1: Rewrite the expression:
\(x^{2}+\left(-3-4\right)x+12\)
- step2: Rewrite the expression:
\(x^{2}-3x-4x+12\)
- step3: Factor the expression:
\(x\left(x-3\right)-4\left(x-3\right)\)
- step4: Factor the expression:
\(\left(x-4\right)\left(x-3\right)\)
Factor the expression \( 3 x^{2}+4 x-4 \).
Factor the expression by following steps:
- step0: Factor:
\(3x^{2}+4x-4\)
- step1: Rewrite the expression:
\(3x^{2}+\left(-2+6\right)x-4\)
- step2: Rewrite the expression:
\(3x^{2}-2x+6x-4\)
- step3: Factor the expression:
\(x\left(3x-2\right)+2\left(3x-2\right)\)
- step4: Factor the expression:
\(\left(x+2\right)\left(3x-2\right)\)
Factor the expression \( 40 x^{2}+6 x y-18 y^{2 \).
Factor the expression by following steps:
- step0: Factor:
\(40x^{2}+6xy-18y^{2}\)
- step1: Factor the expression:
\(2\left(20x^{2}+15xy-12yx-9y^{2}\right)\)
- step2: Factor the expression:
\(2\left(5x\left(4x+3y\right)-3y\left(4x+3y\right)\right)\)
- step3: Factor the expression:
\(2\left(5x-3y\right)\left(4x+3y\right)\)
Factor the expression \( 24 x^{2}-2 x y-y^{2 \).
Factor the expression by following steps:
- step0: Factor:
\(24x^{2}-2xy-y^{2}\)
- step1: Rewrite the expression:
\(24x^{2}+\left(-6+4\right)xy-y^{2}\)
- step2: Rewrite the expression:
\(24x^{2}-6xy+4yx-y^{2}\)
- step3: Factor the expression:
\(6x\left(4x-y\right)+y\left(4x-y\right)\)
- step4: Factor the expression:
\(\left(6x+y\right)\left(4x-y\right)\)
Factor the expression \( 5 x^{3} y+25 x^{2} y-30 x y \).
Factor the expression by following steps:
- step0: Factor:
\(5x^{3}y+25x^{2}y-30xy\)
- step1: Factor the expression:
\(5\left(x^{3}y+5x^{2}y-6xy\right)\)
- step2: Factor the expression:
\(5xy\left(x^{2}+5x-6\right)\)
- step3: Factor the expression:
\(5xy\left(x-1\right)\left(x+6\right)\)
Here are the factorizations for each expression:
a) \( x^{2}-7x+12 \)
**Factorization:** \( (x-4)(x-3) \)
b) \( 2x^{2}+12x+18 \)
**Factorization:** \( 2(x+3)^{2} \)
c) \( x^{2}-9x+20 \)
**Factorization:** \( (x-5)(x-4) \)
d) \( 3x^{2}-9x+24 \)
**Factorization:** \( 3(x^{2}-3x+8) \) (This does not factor further over the reals)
e) \( 2x^{2}+5x+3 \)
**Factorization:** \( (x+1)(2x+3) \)
f) \( 3x^{2}+4x-4 \)
**Factorization:** \( (x+2)(3x-2) \)
g) \( 5x^{3}y+25x^{2}y-30xy \)
**Factorization:** \( 5xy(x-1)(x+6) \)
h) \( 40x^{2}+6xy-18y^{2} \)
**Factorization:** \( 2(5x-3y)(4x+3y) \)
i) \( 24x^{2}-2xy-y^{2} \)
**Factorization:** \( (6x+y)(4x-y) \)
j) \( 3x^{2}+19x+20 \)
**Factorization:** \( (x+5)(3x+4) \)
If you have any further questions or need additional assistance, feel free to ask!
Reviewed and approved by the UpStudy tutoring team
Like
error msg
Explain
Simplify this solution
Extra Insights
For \( x^{2}-7x+12 \), we seek two numbers that multiply to 12 (the constant) and add up to -7 (the coefficient of x). Those numbers are -3 and -4. Thus, the factorization is \( (x-3)(x-4) \). For \( 40x^{2}+6xy-18y^{2} \), we can first factor out the greatest common factor, which is 2. This gives us \( 2(20x^{2}+3xy-9y^{2}) \). Next, we look for factors of \( 20 \cdot -9 = -180 \) that add up to 3. The pair (15, -12) fits, enabling us to rewrite and factor it further, giving \( 2(20x^{2}+15xy-12xy-9y^{2}) \) which can be factored into \( 2(5x-3y)(4x+3y) \).