Responder
Here are the factorizations:
a) \( x^{2}-7x+12 = (x-4)(x-3) \)
b) \( 2x^{2}+12x+18 = 2(x+3)^{2} \)
c) \( x^{2}-9x+20 = (x-5)(x-4) \)
d) \( 3x^{2}-9x+24 = 3(x^{2}-3x+8) \)
e) \( 2x^{2}+5x+3 = (x+1)(2x+3) \)
f) \( 3x^{2}+4x-4 = (x+2)(3x-2) \)
g) \( 5x^{3}y+25x^{2}y-30xy = 5xy(x-1)(x+6) \)
h) \( 40x^{2}+6xy-18y^{2} = 2(5x-3y)(4x+3y) \)
i) \( 24x^{2}-2xy-y^{2} = (6x+y)(4x-y) \)
j) \( 3x^{2}+19x+20 = (x+5)(3x+4) \)
Solución
Factor the expression by following steps:
- step0: Factor:
\(2x^{2}+12x+18\)
- step1: Factor the expression:
\(2\left(x+3\right)^{2}\)
Factor the expression \( 3 x^{2}-9 x+24 \).
Factor the expression by following steps:
- step0: Factor:
\(3x^{2}-9x+24\)
- step1: Factor the expression:
\(3\left(x^{2}-3x+8\right)\)
Factor the expression \( 3 x^{2}+19 x+20 \).
Factor the expression by following steps:
- step0: Factor:
\(3x^{2}+19x+20\)
- step1: Rewrite the expression:
\(3x^{2}+\left(4+15\right)x+20\)
- step2: Rewrite the expression:
\(3x^{2}+4x+15x+20\)
- step3: Factor the expression:
\(x\left(3x+4\right)+5\left(3x+4\right)\)
- step4: Factor the expression:
\(\left(x+5\right)\left(3x+4\right)\)
Factor the expression \( 2 x^{2}+5 x+3 \).
Factor the expression by following steps:
- step0: Factor:
\(2x^{2}+5x+3\)
- step1: Rewrite the expression:
\(2x^{2}+\left(3+2\right)x+3\)
- step2: Rewrite the expression:
\(2x^{2}+3x+2x+3\)
- step3: Factor the expression:
\(x\left(2x+3\right)+2x+3\)
- step4: Factor the expression:
\(\left(x+1\right)\left(2x+3\right)\)
Factor the expression \( x^{2}-9 x+20 \).
Factor the expression by following steps:
- step0: Factor:
\(x^{2}-9x+20\)
- step1: Rewrite the expression:
\(x^{2}+\left(-4-5\right)x+20\)
- step2: Rewrite the expression:
\(x^{2}-4x-5x+20\)
- step3: Factor the expression:
\(x\left(x-4\right)-5\left(x-4\right)\)
- step4: Factor the expression:
\(\left(x-5\right)\left(x-4\right)\)
Factor the expression \( x^{2}-7 x+12 \).
Factor the expression by following steps:
- step0: Factor:
\(x^{2}-7x+12\)
- step1: Rewrite the expression:
\(x^{2}+\left(-3-4\right)x+12\)
- step2: Rewrite the expression:
\(x^{2}-3x-4x+12\)
- step3: Factor the expression:
\(x\left(x-3\right)-4\left(x-3\right)\)
- step4: Factor the expression:
\(\left(x-4\right)\left(x-3\right)\)
Factor the expression \( 3 x^{2}+4 x-4 \).
Factor the expression by following steps:
- step0: Factor:
\(3x^{2}+4x-4\)
- step1: Rewrite the expression:
\(3x^{2}+\left(-2+6\right)x-4\)
- step2: Rewrite the expression:
\(3x^{2}-2x+6x-4\)
- step3: Factor the expression:
\(x\left(3x-2\right)+2\left(3x-2\right)\)
- step4: Factor the expression:
\(\left(x+2\right)\left(3x-2\right)\)
Factor the expression \( 40 x^{2}+6 x y-18 y^{2 \).
Factor the expression by following steps:
- step0: Factor:
\(40x^{2}+6xy-18y^{2}\)
- step1: Factor the expression:
\(2\left(20x^{2}+15xy-12yx-9y^{2}\right)\)
- step2: Factor the expression:
\(2\left(5x\left(4x+3y\right)-3y\left(4x+3y\right)\right)\)
- step3: Factor the expression:
\(2\left(5x-3y\right)\left(4x+3y\right)\)
Factor the expression \( 24 x^{2}-2 x y-y^{2 \).
Factor the expression by following steps:
- step0: Factor:
\(24x^{2}-2xy-y^{2}\)
- step1: Rewrite the expression:
\(24x^{2}+\left(-6+4\right)xy-y^{2}\)
- step2: Rewrite the expression:
\(24x^{2}-6xy+4yx-y^{2}\)
- step3: Factor the expression:
\(6x\left(4x-y\right)+y\left(4x-y\right)\)
- step4: Factor the expression:
\(\left(6x+y\right)\left(4x-y\right)\)
Factor the expression \( 5 x^{3} y+25 x^{2} y-30 x y \).
Factor the expression by following steps:
- step0: Factor:
\(5x^{3}y+25x^{2}y-30xy\)
- step1: Factor the expression:
\(5\left(x^{3}y+5x^{2}y-6xy\right)\)
- step2: Factor the expression:
\(5xy\left(x^{2}+5x-6\right)\)
- step3: Factor the expression:
\(5xy\left(x-1\right)\left(x+6\right)\)
Here are the factorizations for each expression:
a) \( x^{2}-7x+12 \)
**Factorization:** \( (x-4)(x-3) \)
b) \( 2x^{2}+12x+18 \)
**Factorization:** \( 2(x+3)^{2} \)
c) \( x^{2}-9x+20 \)
**Factorization:** \( (x-5)(x-4) \)
d) \( 3x^{2}-9x+24 \)
**Factorization:** \( 3(x^{2}-3x+8) \) (This does not factor further over the reals)
e) \( 2x^{2}+5x+3 \)
**Factorization:** \( (x+1)(2x+3) \)
f) \( 3x^{2}+4x-4 \)
**Factorization:** \( (x+2)(3x-2) \)
g) \( 5x^{3}y+25x^{2}y-30xy \)
**Factorization:** \( 5xy(x-1)(x+6) \)
h) \( 40x^{2}+6xy-18y^{2} \)
**Factorization:** \( 2(5x-3y)(4x+3y) \)
i) \( 24x^{2}-2xy-y^{2} \)
**Factorization:** \( (6x+y)(4x-y) \)
j) \( 3x^{2}+19x+20 \)
**Factorization:** \( (x+5)(3x+4) \)
If you have any further questions or need additional assistance, feel free to ask!
Revisado y aprobado por el equipo de tutoría de UpStudy
Explicar
Simplifique esta solución