Question
upstudy study bank question image url

Tarea. Cncatrar las primeras cinco. Elementos de las sucesiones \( \begin{array}{ll}\text { a) } a_{n}=\frac{1}{3 n+1} & \text { d) } a n=\frac{n!}{(n-1)(n+1)} \\ \text { b) } a n=n^{2}+3 n+3 & \text { e) } a n=\frac{(n+1)!}{(n+2)!} \\ \text { c) } a_{n}=5 n \\ 5 n+1\end{array} \)

Ask by Murphy Frazier. in Mexico
Jan 24,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

Aquí están los primeros cinco elementos de cada sucesión: **a) \( a_{n} = \frac{1}{3n + 1} \)** 1. \( \frac{1}{4} \) 2. \( \frac{1}{7} \) 3. \( \frac{1}{10} \) 4. \( \frac{1}{13} \) 5. \( \frac{1}{16} \) **b) \( a_{n} = n^{2} + 3n + 3 \)** 1. 7 2. 13 3. 21 4. 31 5. 43 **c) \( a_{n} = \frac{5n}{5n + 1} \)** 1. \( \frac{5}{6} \) 2. \( \frac{10}{11} \) 3. \( \frac{15}{16} \) 4. \( \frac{20}{21} \) 5. \( \frac{25}{26} \) **d) \( a_{n} = \frac{n!}{(n-1)(n+1)} \)** 2. \( \frac{2}{3} \) 3. \( \frac{3}{4} \) 4. \( \frac{8}{5} \) 5. 5 6. \( \frac{144}{7} \) **e) \( a_{n} = \frac{(n+1)!}{(n+2)!} \)** 1. \( \frac{1}{3} \) 2. \( \frac{1}{4} \) 3. \( \frac{1}{5} \) 4. \( \frac{1}{6} \) 5. \( \frac{1}{7} \)

Solution

Claro, a continuación se presentan las primeras cinco elementos de cada una de las sucesiones dadas: --- **a) \( a_{n} = \frac{1}{3n + 1} \)** | \( n \) | \( a_{n} \) | |---------|-----------------| | 1 | \( \frac{1}{4} \) | | 2 | \( \frac{1}{7} \) | | 3 | \( \frac{1}{10} \) | | 4 | \( \frac{1}{13} \) | | 5 | \( \frac{1}{16} \) | --- **b) \( a_{n} = n^{2} + 3n + 3 \)** | \( n \) | \( a_{n} \) | |---------|-------------| | 1 | 7 | | 2 | 13 | | 3 | 21 | | 4 | 31 | | 5 | 43 | --- **c) \( a_{n} = \frac{5n}{5n + 1} \)** | \( n \) | \( a_{n} \) | |---------|-------------------| | 1 | \( \frac{5}{6} \) | | 2 | \( \frac{10}{11} \) | | 3 | \( \frac{15}{16} \) | | 4 | \( \frac{20}{21} \) | | 5 | \( \frac{25}{26} \) | --- **d) \( a_{n} = \frac{n!}{(n-1)(n+1)} \)** *Nota:* Para \( n = 1 \), la expresión está indefinida. Por lo tanto, consideramos \( n = 2 \) a \( n = 6 \) para obtener los primeros cinco términos definidos. | \( n \) | \( a_{n} \) | |---------|------------------| | 2 | \( \frac{2}{3} \) | | 3 | \( \frac{3}{4} \) | | 4 | \( \frac{8}{5} \) | | 5 | 5 | | 6 | \( \frac{144}{7} \) | --- **e) \( a_{n} = \frac{(n+1)!}{(n+2)!} \)** Simplificando, \( a_{n} = \frac{1}{n + 2} \). | \( n \) | \( a_{n} \) | |---------|-------------| | 1 | \( \frac{1}{3} \) | | 2 | \( \frac{1}{4} \) | | 3 | \( \frac{1}{5} \) | | 4 | \( \frac{1}{6} \) | | 5 | \( \frac{1}{7} \) | --- Espero que esta información te sea de ayuda para tu tarea. Si tienes alguna otra pregunta, no dudes en consultarme.

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Mind Expander

Para cada una de las sucesiones que mencionas, vamos a calcular los primeros cinco términos: a) \( a_{n} = \frac{1}{3n+1} \) - \( a_1 = \frac{1}{4} \) - \( a_2 = \frac{1}{7} \) - \( a_3 = \frac{1}{10} \) - \( a_4 = \frac{1}{13} \) - \( a_5 = \frac{1}{16} \) b) \( a_{n} = n^2 + 3n + 3 \) - \( a_1 = 1^2 + 3(1) + 3 = 7 \) - \( a_2 = 2^2 + 3(2) + 3 = 13 \) - \( a_3 = 3^2 + 3(3) + 3 = 21 \) - \( a_4 = 4^2 + 3(4) + 3 = 31 \) - \( a_5 = 5^2 + 3(5) + 3 = 43 \) c) \( a_{n} = \frac{5n}{5n+1} \) - \( a_1 = \frac{5(1)}{5(1)+1} = \frac{5}{6} \) - \( a_2 = \frac{5(2)}{5(2)+1} = \frac{10}{11} \) - \( a_3 = \frac{5(3)}{5(3)+1} = \frac{15}{16} \) - \( a_4 = \frac{5(4)}{5(4)+1} = \frac{20}{21} \) - \( a_5 = \frac{5(5)}{5(5)+1} = \frac{25}{26} \) d) \( a_{n} = \frac{n!}{(n-1)(n+1)} \) - \( a_1 = \frac{1!}{(1-1)(1+1)} \) (no válido, \( \frac{1}{0} \)) - \( a_2 = \frac{2!}{(2-1)(2+1)} = \frac{2}{1 \cdot 3} = \frac{2}{3} \) - \( a_3 = \frac{3!}{(3-1)(3+1)} = \frac{6}{2 \cdot 4} = \frac{3}{4} \) - \( a_4 = \frac{4!}{(4-1)(4+1)} = \frac{24}{3 \cdot 5} = \frac{24}{15} = \frac{8}{5} \) - \( a_5 = \frac{5!}{(5-1)(5+1)} = \frac{120}{4 \cdot 6} = 5 \) e) \( a_{n} = \frac{(n+1)!}{(n+2)!} \) - \( a_1 = \frac{(1+1)!}{(1+2)!} = \frac{2!}{3!} = \frac{2}{6} = \frac{1}{3} \) - \( a_2 = \frac{(2+1)!}{(2+2)!} = \frac{3!}{4!} = \frac{6}{24} = \frac{1}{4} \) - \( a_3 = \frac{(3+1)!}{(3+2)!} = \frac{4!}{5!} = \frac{24}{120} = \frac{1}{5} \) - \( a_4 = \frac{(4+1)!}{(4+2)!} = \frac{5!}{6!} = \frac{120}{720} = \frac{1}{6} \) - \( a_5 = \frac{(5+1)!}{(5+2)!} = \frac{6!}{7!} = \frac{720}{5040} = \frac{1}{7} \) En resumen: - Sucesión a: \( \frac{1}{4}, \frac{1}{7}, \frac{1}{10}, \frac{1}{13}, \frac{1}{16} \) - Sucesión b: \( 7, 13, 21,

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy