Tarea. Cncatrar las primeras cinco. Elementos de las sucesiones \( \begin{array}{ll}\text { a) } a_{n}=\frac{1}{3 n+1} & \text { d) } a n=\frac{n!}{(n-1)(n+1)} \\ \text { b) } a n=n^{2}+3 n+3 & \text { e) } a n=\frac{(n+1)!}{(n+2)!} \\ \text { c) } a_{n}=5 n \\ 5 n+1\end{array} \)
Real Tutor Solution
Answer
Solution
Reviewed and approved by the UpStudy tutoring team
Mind Expander
Para cada una de las sucesiones que mencionas, vamos a calcular los primeros cinco términos: a) \( a_{n} = \frac{1}{3n+1} \) - \( a_1 = \frac{1}{4} \) - \( a_2 = \frac{1}{7} \) - \( a_3 = \frac{1}{10} \) - \( a_4 = \frac{1}{13} \) - \( a_5 = \frac{1}{16} \) b) \( a_{n} = n^2 + 3n + 3 \) - \( a_1 = 1^2 + 3(1) + 3 = 7 \) - \( a_2 = 2^2 + 3(2) + 3 = 13 \) - \( a_3 = 3^2 + 3(3) + 3 = 21 \) - \( a_4 = 4^2 + 3(4) + 3 = 31 \) - \( a_5 = 5^2 + 3(5) + 3 = 43 \) c) \( a_{n} = \frac{5n}{5n+1} \) - \( a_1 = \frac{5(1)}{5(1)+1} = \frac{5}{6} \) - \( a_2 = \frac{5(2)}{5(2)+1} = \frac{10}{11} \) - \( a_3 = \frac{5(3)}{5(3)+1} = \frac{15}{16} \) - \( a_4 = \frac{5(4)}{5(4)+1} = \frac{20}{21} \) - \( a_5 = \frac{5(5)}{5(5)+1} = \frac{25}{26} \) d) \( a_{n} = \frac{n!}{(n-1)(n+1)} \) - \( a_1 = \frac{1!}{(1-1)(1+1)} \) (no válido, \( \frac{1}{0} \)) - \( a_2 = \frac{2!}{(2-1)(2+1)} = \frac{2}{1 \cdot 3} = \frac{2}{3} \) - \( a_3 = \frac{3!}{(3-1)(3+1)} = \frac{6}{2 \cdot 4} = \frac{3}{4} \) - \( a_4 = \frac{4!}{(4-1)(4+1)} = \frac{24}{3 \cdot 5} = \frac{24}{15} = \frac{8}{5} \) - \( a_5 = \frac{5!}{(5-1)(5+1)} = \frac{120}{4 \cdot 6} = 5 \) e) \( a_{n} = \frac{(n+1)!}{(n+2)!} \) - \( a_1 = \frac{(1+1)!}{(1+2)!} = \frac{2!}{3!} = \frac{2}{6} = \frac{1}{3} \) - \( a_2 = \frac{(2+1)!}{(2+2)!} = \frac{3!}{4!} = \frac{6}{24} = \frac{1}{4} \) - \( a_3 = \frac{(3+1)!}{(3+2)!} = \frac{4!}{5!} = \frac{24}{120} = \frac{1}{5} \) - \( a_4 = \frac{(4+1)!}{(4+2)!} = \frac{5!}{6!} = \frac{120}{720} = \frac{1}{6} \) - \( a_5 = \frac{(5+1)!}{(5+2)!} = \frac{6!}{7!} = \frac{720}{5040} = \frac{1}{7} \) En resumen: - Sucesión a: \( \frac{1}{4}, \frac{1}{7}, \frac{1}{10}, \frac{1}{13}, \frac{1}{16} \) - Sucesión b: \( 7, 13, 21,