Question
upstudy study bank question image url

(4) Si \( B(x)=\frac{\cos 2 x+\operatorname{sen}^{2} x}{1-\cos ^{2} x} ; C(x)=\cot ^{2} x \quad D(x)=\cos x \) a) Demuestre que \( B(x)=C(x) \)

Ask by Potter Dunn. in Cuba
Jan 24,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

\( B(x) = C(x) \)

Solution

Para demostrar que \( B(x) = C(x) \), sigamos los pasos de simplificación de la expresión de \( B(x) \): Dado: \[ B(x) = \frac{\cos 2x + \sen^{2} x}{1 - \cos^{2} x} \] \[ C(x) = \cot^{2} x \] **Paso 1: Simplificar el denominador** Sabemos que: \[ 1 - \cos^{2} x = \sen^{2} x \] Entonces: \[ B(x) = \frac{\cos 2x + \sen^{2} x}{\sen^{2} x} \] **Paso 2: Descomponer \(\cos 2x\)** Utilizamos la identidad trigonométrica: \[ \cos 2x = 1 - 2\sen^{2} x \] Sustituyendo en \( B(x) \): \[ B(x) = \frac{1 - 2\sen^{2} x + \sen^{2} x}{\sen^{2} x} = \frac{1 - \sen^{2} x}{\sen^{2} x} \] **Paso 3: Separar la fracción** \[ B(x) = \frac{1}{\sen^{2} x} - \frac{\sen^{2} x}{\sen^{2} x} = \frac{1}{\sen^{2} x} - 1 \] \[ B(x) = \csc^{2} x - 1 \] **Paso 4: Aplicar otra identidad trigonométrica** Sabemos que: \[ \csc^{2} x = 1 + \cot^{2} x \] Entonces: \[ B(x) = (1 + \cot^{2} x) - 1 = \cot^{2} x \] **Conclusión:** \[ B(x) = \cot^{2} x = C(x) \] Por lo tanto, hemos demostrado que \( B(x) = C(x) \).

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Extra Insights

Para demostrar que \( B(x) = C(x) \), comenzamos analizando ambas funciones. La función \( B(x) \) se puede simplificar de la siguiente manera: \[ B(x) = \frac{\cos(2x) + \sin^2(x)}{1 - \cos^2(x)} \] Recordemos que \( 1 - \cos^2(x) = \sin^2(x) \). Por lo tanto, podemos reescribir \( B(x) \): \[ B(x) = \frac{\cos(2x) + \sin^2(x)}{\sin^2(x)} \] Aprovechando la identidad \( \cos(2x) = \cos^2(x) - \sin^2(x) = 2\cos^2(x) - 1 \), tenemos: \[ B(x) = \frac{(2\cos^2(x) - 1) + \sin^2(x)}{\sin^2(x)} = \frac{2\cos^2(x) - 1 + \sin^2(x)}{\sin^2(x)} = \frac{2\cos^2(x) - 1 + (1 - \cos^2(x))}{\sin^2(x)} = \frac{2\cos^2(x)}{\sin^2(x)} = 2\cot^2(x) \] Ahora, observamos que: \[ C(x) = \cot^2(x) \] Por lo tanto, mediante simplificación, podemos concluir que: \[ B(x) = 2 \cot^2(x) \] Esto implica que \( B(x) \neq C(x) \). En realidad, se podría afirmar que \( B(x) = 2C(x) \). Por tanto, \( B(x) \) y \( C(x) \) no son iguales, y este resultado debe esclarecerse en el desarrollo del problema.

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy