20. \( \begin{array}{l}\left(x^{2} y^{3}\right)^{\frac{3}{4}} \\ \left(x^{2}\right)^{\frac{3}{4}}\left(y^{3}\right)^{\frac{3}{4}} \\ x^{\frac{3}{2}} y^{\frac{9}{4}}\end{array} \)
Real Tutor Solution
Answer
Solution
Reviewed and approved by the UpStudy tutoring team
The Deep Dive
To evaluate \( \left(x^{2} y^{3}\right)^{\frac{3}{4}} \), you can apply the property of exponents that states \( (a^m \cdot b^n)^p = a^{m \cdot p} \cdot b^{n \cdot p} \). We start with: \[ \left(x^{2} y^{3}\right)^{\frac{3}{4}} = \left(x^{2}\right)^{\frac{3}{4}} \cdot \left(y^{3}\right)^{\frac{3}{4}} \] Calculating each part: \[ \left(x^{2}\right)^{\frac{3}{4}} = x^{2 \cdot \frac{3}{4}} = x^{\frac{3}{2}} \] \[ \left(y^{3}\right)^{\frac{3}{4}} = y^{3 \cdot \frac{3}{4}} = y^{\frac{9}{4}} \] Combining these gives: \[ x^{\frac{3}{2}} y^{\frac{9}{4}} \] So, the final expression is \( x^{\frac{3}{2}} y^{\frac{9}{4}} \).