Find the exact value of the expression. \[ \sin \left(2 \cos ^{-1}\left(-\frac{4}{5}\right)\right) \] \( \sin \left(2 \cos ^{-1}\left(-\frac{4}{5}\right)\right)=\square \)
Real Tutor Solution
Answer
Solution
Sign in to Unlock Answers for Free!
A Learning Platform Trusted by Millions of Real Students and Teachers.
Reviewed and approved by the UpStudy tutoring team
Bonus Knowledge
To find the exact value of the expression \( \sin \left(2 \cos ^{-1}\left(-\frac{4}{5}\right)\right) \), we can use the double angle identity for sine: \[ \sin(2\theta) = 2 \sin(\theta) \cos(\theta) \] Let \( \theta = \cos^{-1}\left(-\frac{4}{5}\right) \). Therefore, we have \( \cos(\theta) = -\frac{4}{5} \). Next, we need to find \( \sin(\theta) \). Using the Pythagorean identity: \[ \sin^2(\theta) + \cos^2(\theta) = 1 \] Substituting \( \cos(\theta) \): \[ \sin^2(\theta) + \left(-\frac{4}{5}\right)^2 = 1 \] \[ \sin^2(\theta) + \frac{16}{25} = 1 \] \[ \sin^2(\theta) = 1 - \frac{16}{25} = \frac{25}{25} - \frac{16}{25} = \frac{9}{25} \] \[ \sin(\theta) = \pm \frac{3}{5} \] Since \( \theta = \cos^{-1}\left(-\frac{4}{5}\right) \) corresponds to the angle in the second quadrant where sine is positive, we take: \[ \sin(\theta) = \frac{3}{5} \] Now, we can substitute back into the double angle formula: \[ \sin\left(2 \theta\right) = 2 \sin(\theta) \cos(\theta) = 2 \left(\frac{3}{5}\right) \left(-\frac{4}{5}\right) \] Calculating this gives: \[ \sin\left(2 \theta\right) = 2 \cdot \frac{3}{5} \cdot -\frac{4}{5} = -\frac{24}{25} \] Thus, the exact value of the expression is: \[ \sin \left(2 \cos ^{-1}\left(-\frac{4}{5}\right)\right) = -\frac{24}{25} \] Final answer: \[ -\frac{24}{25} \]