Question
upstudy study bank question image url

\( \int _ { - 1 } ^ { 1 } \operatorname { coth } x d x \)

Ask by Gordon Ray. in Colombia
Feb 03,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

La integral \(\int_{-1}^{1} \coth(x) \, dx\) no está definida porque diverge en \(x = 0\).

Solution

La integral dada es: \[ \int_{-1}^{1} \coth(x) \, dx \] Primero, analizamos la función \(\coth(x)\): \[ \coth(x) = \frac{\cosh(x)}{\sinh(x)} = \frac{e^x + e^{-x}}{e^x - e^{-x}} \] Es importante notar que \(\coth(x)\) es una función impar, es decir, \(\coth(-x) = -\coth(x)\). En teoría, la integral de una función impar sobre un intervalo simétrico alrededor del origen \([-a, a]\) debería ser cero. Sin embargo, debemos verificar si la integral converge. Observemos el comportamiento de \(\coth(x)\) cerca de \(x = 0\): \[ \coth(x) \approx \frac{1}{x} + \frac{x}{3} + \dots \quad \text{cuando } x \to 0 \] La integral se convierte en una integral impropia debido a la singularidad en \(x = 0\): \[ \int_{-1}^{1} \coth(x) \, dx = \lim_{a \to 0^-} \int_{-1}^{a} \coth(x) \, dx + \lim_{b \to 0^+} \int_{b}^{1} \coth(x) \, dx \] Calculando las primitivas: \[ \int \coth(x) \, dx = \ln|\sinh(x)| + C \] Aplicando los límites: \[ \lim_{a \to 0^-} \left[ \ln|\sinh(a)| - \ln|\sinh(-1)| \right] + \lim_{b \to 0^+} \left[ \ln|\sinh(1)| - \ln|\sinh(b)| \right] \] Simplificando: \[ \lim_{a \to 0^-} \ln|\sinh(a)| - \lim_{b \to 0^+} \ln|\sinh(b)| \] Como \(\sinh(a) \approx a\) cuando \(a \to 0\): \[ \lim_{a \to 0^-} \ln|a| \quad \text{y} \quad \lim_{b \to 0^+} \ln|b| \] Ambos límites tienden a \(-\infty\), lo que indica que la integral no converge. **Conclusión:** La integral \(\int_{-1}^{1} \coth(x) \, dx\) no está definida porque diverge en \(x = 0\).

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

The Deep Dive

Did you know that the integral of \( \operatorname{coth} x \) over a symmetric interval around zero, like from -1 to 1, showcases the beauty of odd and even functions? The function \( \operatorname{coth} x \) is an odd function, meaning that \( \operatorname{coth}(-x) = -\operatorname{coth}(x) \). Thus, when integrating an odd function over a symmetric interval, the result always equals zero. So, this integral evaluates to \(0\)! If you want to dive deeper into integrals, consider exploring applications in physics, like determining the behavior of light or sound waves. The properties of functions and their integrals often lead to fascinating insights in various scientific fields, enhancing our understanding of the world around us!

Related Questions

Latest Calculus Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy