Question
upstudy study bank question image url

\( \int _ { 0 } ^ { \pi } \sec ^ { 2 } x d x \)

Ask by Watkins Powers. in Colombia
Feb 03,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

La integral \(\int_{0}^{\pi} \sec^{2}x \, dx\) no converge y tiende a infinito.

Solution

Para calcular la integral definida: \[ \int_{0}^{\pi} \sec^{2}x \, dx \] Primero, recordemos que la integral de \(\sec^{2}x\) es: \[ \int \sec^{2}x \, dx = \tan x + C \] Donde \(C\) es la constante de integración. Evaluemos la integral entre los límites de \(0\) y \(\pi\): \[ \left. \tan x \right|_{0}^{\pi} = \tan(\pi) - \tan(0) = 0 - 0 = 0 \] Sin embargo, debemos tener en cuenta que la función \(\sec^{2}x\) tiene asíntotas verticales donde \(\cos x = 0\), es decir, en \(x = \frac{\pi}{2}\). Esto implica que la integral presenta una discontinuidad en este punto. Para abordar esto, descomponemos la integral en dos partes: \[ \int_{0}^{\pi} \sec^{2}x \, dx = \int_{0}^{\frac{\pi}{2}} \sec^{2}x \, dx + \int_{\frac{\pi}{2}}^{\pi} \sec^{2}x \, dx \] Evaluemos cada parte por separado: 1. **Primera integral (\(0\) a \(\frac{\pi}{2}\)):** \[ \lim_{x \to \frac{\pi}{2}^-} \tan x = +\infty \] 2. **Segunda integral (\(\frac{\pi}{2}\) a \(\pi\)):** \[ \lim_{x \to \frac{\pi}{2}^+} \tan x = -\infty \] Sin embargo, al evaluar: \[ \tan(\pi) - \lim_{x \to \frac{\pi}{2}^+} \tan x = 0 - (-\infty) = +\infty \] Ambas partes de la integral tienden a \(+\infty\), lo que indica que la integral original **diverge**. **Conclusión:** La integral \(\int_{0}^{\pi} \sec^{2}x \, dx\) no converge y tiende a infinito.

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Beyond the Answer

To compute the integral \( \int _ { 0 } ^ { \pi } \sec ^ { 2 } x \, dx \), we start by recognizing that the antiderivative of \( \sec^2 x \) is \( \tan x \). Therefore, we evaluate the limits: \[ \int \sec^2 x \, dx = \tan x + C \] Now, applying the limits from \( 0 \) to \( \pi \): \[ \int _ { 0 } ^ { \pi } \sec ^ { 2 } x \, dx = \left[ \tan x \right] _ { 0 } ^ { \pi } = \tan(\pi) - \tan(0) = 0 - 0 = 0 \] Thus, the integral evaluates to \( 0 \).

Latest Calculus Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy