Pregunta
upstudy study bank question image url

Part 5 of 5 Points: 0 of 1 Find the exact value of each of the remaining trigonometric functions of \( \theta \). Rationalize denominators when applicable. \( \cot \theta=-\frac{\sqrt{3}}{7} \), given that \( \theta \) is in quadrant II B. The function is undefined. Select the correct choice below and, if necessary, fill in the answer box to complete your choice. A. \( \boldsymbol{\operatorname { t a n }} \theta=-\frac{7 \sqrt{3}}{3} \) (Simplify your answer, including any radicals. Use integers or fractions for any numbers in the expression.) B. The function is undefined. Select the correct choice below and, if necessary, fill in the answer box to complete your choice. A. \( \csc \theta=\frac{2 \sqrt{13}}{7} \) (Simplify your answer, including any radicals. Use integers or fractions for any numbers in the expression.) B. The function is undefined. Select the correct choice below and, if necessary, fill in the answer box to complete your choice. A. \( \sec \theta= \) \( \square \) (Simplify your answer, including any radicals. Use integers or fractions for any numbers in the expression.) B. The function is undefined. View an example Get more help -

Ask by Carrillo Beck. in the United States
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

\( \tan \theta = -\frac{7\sqrt{3}}{3} \), \( \csc \theta = \frac{2\sqrt{13}}{7} \), \( \sec \theta = -\frac{2\sqrt{39}}{3} \)

Solución

To find the exact values of the remaining trigonometric functions of \( \theta \) given that \( \cot \theta = -\frac{\sqrt{3}}{7} \) and \( \theta \) is in **Quadrant II**, we'll follow these steps: 1. **Determine the Signs in Quadrant II:** - **Sine (\( \sin \theta \))**: Positive - **Cosine (\( \cos \theta \))**: Negative - **Tangent (\( \tan \theta \))**: Negative - **Cosecant (\( \csc \theta \))**: Positive - **Secant (\( \sec \theta \))**: Negative - **Cotangent (\( \cot \theta \))**: Negative (Given) 2. **Use the Definition of Cotangent:** \[ \cot \theta = \frac{\text{Adjacent}}{\text{Opposite}} = -\frac{\sqrt{3}}{7} \] - **Adjacent Side**: \( -\sqrt{3} \) (negative in Quadrant II) - **Opposite Side**: \( 7 \) (positive in Quadrant II) 3. **Find the Hypotenuse Using the Pythagorean Theorem:** \[ \text{Hypotenuse} = \sqrt{(\text{Adjacent})^2 + (\text{Opposite})^2} = \sqrt{(-\sqrt{3})^2 + 7^2} = \sqrt{3 + 49} = \sqrt{52} = 2\sqrt{13} \] 4. **Calculate the Remaining Trigonometric Functions:** - **Sine (\( \sin \theta \)):** \[ \sin \theta = \frac{\text{Opposite}}{\text{Hypotenuse}} = \frac{7}{2\sqrt{13}} = \frac{7\sqrt{13}}{26} \] - **Cosine (\( \cos \theta \)):** \[ \cos \theta = \frac{\text{Adjacent}}{\text{Hypotenuse}} = \frac{-\sqrt{3}}{2\sqrt{13}} = \frac{-\sqrt{39}}{26} \] - **Tangent (\( \tan \theta \)):** \[ \tan \theta = \frac{\text{Opposite}}{\text{Adjacent}} = \frac{7}{-\sqrt{3}} = -\frac{7\sqrt{3}}{3} \] - **Cosecant (\( \csc \theta \)):** \[ \csc \theta = \frac{1}{\sin \theta} = \frac{2\sqrt{13}}{7} \] - **Secant (\( \sec \theta \)):** \[ \sec \theta = \frac{1}{\cos \theta} = \frac{1}{-\frac{\sqrt{39}}{26}} = -\frac{26}{\sqrt{39}} = -\frac{2\sqrt{39}}{3} \] - **Cotangent (\( \cot \theta \)):** \[ \cot \theta = -\frac{\sqrt{3}}{7} \quad \text{(Given)} \] 5. **Summary of All Trigonometric Functions:** \[ \begin{aligned} \sin \theta &= \frac{7\sqrt{13}}{26} \\ \cos \theta &= \frac{-\sqrt{39}}{26} \\ \tan \theta &= -\frac{7\sqrt{3}}{3} \\ \csc \theta &= \frac{2\sqrt{13}}{7} \\ \sec \theta &= -\frac{2\sqrt{39}}{3} \\ \cot \theta &= -\frac{\sqrt{3}}{7} \quad \text{(Given)} \end{aligned} \] 6. **Addressing the Multiple Choice Options:** - **For \( \tan \theta \):** - **A.** \( \tan \theta = -\frac{7 \sqrt{3}}{3} \) **✔️ Correct** - **B.** The function is undefined. ❌ Incorrect - **For \( \csc \theta \):** - **A.** \( \csc \theta = \frac{2 \sqrt{13}}{7} \) **✔️ Correct** - **B.** The function is undefined. ❌ Incorrect - **For \( \sec \theta \):** - **A.** \( \sec \theta = -\frac{2\sqrt{39}}{3} \) - **B.** The function is undefined. **Choose A** and fill in the answer: \[ \sec \theta = -\frac{2\sqrt{39}}{3} \] Ensure that all radicals are simplified and denominators are rationalized as shown above.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To find the remaining trigonometric functions based on \( \cot \theta = -\frac{\sqrt{3}}{7} \) in quadrant II, we start with the definition of cotangent. Since \( \cot \theta = \frac{\cos \theta}{\sin \theta} \), we can set \( \cos \theta = -\sqrt{3} \) and \( \sin \theta = 7 \) (but we need to adjust these values into a valid triangle using the Pythagorean identity). Using the identity \( \sin^2 \theta + \cos^2 \theta = 1 \), we find: 1. Calculate the hypotenuse: \[ r = \sqrt{(-\sqrt{3})^2 + 7^2} = \sqrt{3 + 49} = \sqrt{52} = 2\sqrt{13}. \] 2. Then, we can determine: \[ \sin \theta = \frac{7}{2\sqrt{13}}, \quad \cos \theta = -\frac{\sqrt{3}}{2\sqrt{13}}. \] 3. Finally, we calculate: \[ \tan \theta = \frac{\sin \theta}{\cos \theta} = -\frac{7}{\sqrt{3}} \rightarrow \tan \theta = -\frac{7 \sqrt{3}}{3} \] (after rationalizing the denominator), \[ \csc \theta = \frac{1}{\sin \theta} = \frac{2\sqrt{13}}{7}, \quad \sec \theta = \frac{1}{\cos \theta} = -\frac{2\sqrt{13}}{\sqrt{3}} = -\frac{2\sqrt{39}}{3} \] (after rationalizing the denominator). So, the answers are: 1. For \( \tan \theta \), the choice is A: \( \tan \theta = -\frac{7 \sqrt{3}}{3} \). 2. For \( \csc \theta \), the choice is A: \( \csc \theta = \frac{2\sqrt{13}}{7} \). 3. For \( \sec \theta \), the choice is A: \( \sec \theta = -\frac{2\sqrt{39}}{3} \).

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad