Question
upstudy study bank question image url

\( \int _ { 0 } ^ { \ln 2 } \frac { e ^ { - x } } { e ^ { - x } + 4 } d x \)

Ask by Blake Frank. in France
Jan 23,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

L'intégrale évaluée est \( \ln\left(\frac{10}{9}\right) \).

Solution

Pour évaluer l'intégrale suivante : \[ \int_{0}^{\ln 2} \frac{e^{-x}}{e^{-x} + 4} \, dx \] **Étapes de résolution :** 1. **Substitution :** Posons \( u = e^{-x} + 4 \). Alors, la dérivée de \( u \) par rapport à \( x \) est : \[ \frac{du}{dx} = -e^{-x} \] Cela implique : \[ e^{-x} \, dx = -du \] 2. **Changement de variable dans l'intégrale :** \[ \int \frac{e^{-x}}{e^{-x} + 4} \, dx = -\int \frac{1}{u} \, du = -\ln|u| + C \] Remplaçons \( u \) par son expression en fonction de \( x \) : \[ -\ln(e^{-x} + 4) + C \] 3. **Évaluation des bornes de l'intégrale :** Calculons la primitive entre \( 0 \) et \( \ln 2 \) : \[ \left[ -\ln(e^{-x} + 4) \right]_{0}^{\ln 2} = -\ln\left(e^{-\ln 2} + 4\right) + \ln\left(e^{0} + 4\right) \] Simplifions : \[ e^{-\ln 2} = \frac{1}{2} \quad \text{et} \quad e^{0} = 1 \] Ainsi : \[ -\ln\left(\frac{1}{2} + 4\right) + \ln(1 + 4) = -\ln\left(\frac{9}{2}\right) + \ln(5) \] Ce qui peut être simplifié en : \[ \ln(5) - \ln\left(\frac{9}{2}\right) = \ln\left(\frac{5}{\frac{9}{2}}\right) = \ln\left(\frac{10}{9}\right) \] **Résultat final :** \[ \int_{0}^{\ln 2} \frac{e^{-x}}{e^{-x} + 4} \, dx = \ln\left(\frac{10}{9}\right) \]

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Mind Expander

To evaluate the integral \( \int _ { 0 } ^ { \ln 2 } \frac { e ^ { - x } } { e ^ { - x } + 4 } d x \), we can use a substitution to simplify the expression. Let's set \( u = e^{-x} \). Therefore, when \( x = 0 \), \( u = 1 \), and when \( x = \ln 2 \), \( u = \frac{1}{2} \). The differential becomes \( du = -e^{-x} dx \) or \( dx = -\frac{du}{u} \). The integral then transforms to: \[ \int _ { 1 } ^ { \frac{1}{2} } \frac{u}{u + 4} \left( -\frac{du}{u} \right) = \int _ { \frac{1}{2} } ^ { 1 } \frac{1}{u + 4} du \] Now we can integrate \( \frac{1}{u + 4} \): \[ \int \frac{1}{u + 4} du = \ln |u + 4| + C \] Evaluating this from \( \frac{1}{2} \) to \( 1 \): \[ \left[ \ln(1 + 4) - \ln\left(\frac{1}{2} + 4\right) \right] = \ln(5) - \ln\left(\frac{9}{2}\right) = \ln\left(5 \cdot \frac{2}{9}\right) = \ln\left(\frac{10}{9}\right) \] Thus, the value of the integral is: \[ \int _ { 0 } ^ { \ln 2 } \frac { e ^ { - x } } { e ^ { - x } + 4 } d x = \ln\left(\frac{10}{9}\right) \]

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy