Question
upstudy study bank question image url

(4) Si \( B(x)=\frac{\cos 2 x+\operatorname{sen}^{2} x}{1-\cos ^{2} x} ; C(x)=\cot ^{2} x \quad D(x)=\cos x \) a) Denuestre que \( B(x)=C(x) \)

Ask by Ryan Todd. in Cuba
Jan 24,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

\( B(x) = C(x) \)

Solution

Para demostrar que \( B(x) = C(x) \), partimos de las expresiones dadas: \[ B(x) = \frac{\cos 2x + \sen^{2}x}{1 - \cos^{2}x} \] \[ C(x) = \cot^{2}x \] **Paso 1: Simplificar el denominador de \( B(x) \)** Sabemos que: \[ 1 - \cos^{2}x = \sen^{2}x \] Por lo tanto, podemos reescribir \( B(x) \) como: \[ B(x) = \frac{\cos 2x + \sen^{2}x}{\sen^{2}x} = \frac{\cos 2x}{\sen^{2}x} + \frac{\sen^{2}x}{\sen^{2}x} = \frac{\cos 2x}{\sen^{2}x} + 1 \] **Paso 2: Expresar \( \cos 2x \) en términos de \( \sen^{2}x \)** Recordemos la identidad trigonométrica: \[ \cos 2x = 1 - 2\sen^{2}x \] Sustituyendo en \( B(x) \): \[ B(x) = \frac{1 - 2\sen^{2}x}{\sen^{2}x} + 1 = \frac{1}{\sen^{2}x} - 2 + 1 = \frac{1}{\sen^{2}x} - 1 \] **Paso 3: Reconocer la definición de \( \cot^{2}x \)** Sabemos que: \[ \cot^{2}x = \frac{\cos^{2}x}{\sen^{2}x} = \frac{1}{\sen^{2}x} - 1 \] Por lo tanto: \[ B(x) = \frac{1}{\sen^{2}x} - 1 = \cot^{2}x = C(x) \] **Conclusión:** Hemos demostrado que \( B(x) = C(x) \).

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Mind Expander

Para demostrar que \( B(x) = C(x) \), comenzamos simplificando \( B(x) \): \[ B(x) = \frac{\cos 2x + \sin^2 x}{1 - \cos^2 x} \] Recordando que \( 1 - \cos^2 x = \sin^2 x \), podemos reescribir \( B(x) \): \[ B(x) = \frac{\cos 2x + \sin^2 x}{\sin^2 x} \] Descomponiendo el numerador, obtenemos: \[ B(x) = \frac{\cos 2x}{\sin^2 x} + 1 \] Recordemos que \( \cos 2x = \cos^2 x - \sin^2 x \). Al sustituir esto en la ecuación, podemos expresar: \[ B(x) = \frac{(\cos^2 x - \sin^2 x)}{\sin^2 x} + 1 = \cot^2 x - 1 + 1 = \cot^2 x \] Por lo tanto, hemos demostrado que \( B(x) = C(x) \), ya que \( C(x) = \cot^2 x \). Así, se cumple la igualdad deseada: \[ B(x) = C(x) \]

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy