Question
upstudy study bank question image url

5. At what point does the graph of \( 4 x-6 y=-1 \) intersect the \( x \)-axis? (A) 4 (B) 6 (C) \( \frac{2}{3} \) (D) \( \frac{1}{6} \) (E) \( -\frac{1}{4} \) 6. If \( 4 x^{3}=-64 \), then \( x= \) (A) -1 (B) 1 (C) \( -2 \sqrt[3]{2} \) (D) \( 2 \sqrt[3]{2} \) (E) 4 7. If the fourth root of the square of a number is 2 , then what is the number? (A) 2 (B) 4 (C) 8 (D) 16 (E) 32 8. If a line is perpendicular to the line \( 2 x+6 y=18 \), what is its slope? (A) \( -\frac{1}{3} \) (B) \( \frac{1}{3} \) (C) -3

Ask by Kelly Vargas. in the United Arab Emirates
Jan 22,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

**问题 5:** 直线 \( 4x - 6y = -1 \) 与 \( x \)-轴的交点是 \( \left(-\frac{1}{4}, 0\right) \)。 **答案:** (E) \( -\frac{1}{4} \) --- **问题 6:** 如果 \( 4x^{3} = -64 \),则 \( x = -2 \sqrt[3]{2} \)。 **答案:** (C) \( -2 \sqrt[3]{2} \) --- **问题 7:** 如果一个数的平方的四次根是 2,那么这个数是 4。 **答案:** (B) 4 --- **问题 8:** 如果一条直线与直线 \( 2x + 6y = 18 \) 垂直,其斜率是 3。 **答案:** (C) -3

Solution

**问题 5:** 求直线 \( 4x - 6y = -1 \) 与 \( x \)-轴的交点。 在 \( x \)-轴上,\( y = 0 \)。将 \( y = 0 \) 代入方程: \[ 4x - 6(0) = -1 \implies 4x = -1 \implies x = -\frac{1}{4} \] 所以交点为 \( \left(-\frac{1}{4}, 0\right) \)。 **答案:** (E) \( -\frac{1}{4} \) --- **问题 6:** 如果 \( 4x^{3} = -64 \),则 \( x = \)? 解方程: \[ 4x^{3} = -64 \implies x^{3} = -16 \implies x = \sqrt[3]{-16} = -\sqrt[3]{16} = -2\sqrt[3]{2} \] **答案:** (C) \( -2 \sqrt[3]{2} \) --- **问题 7:** 如果一个数的平方的四次根是 2,那么这个数是多少? 设这个数为 \( a \),则 \[ \sqrt[4]{a^{2}} = 2 \implies a^{2} = 2^{4} = 16 \implies a = \pm 4 \] 由于选项中只有正数,选 \( 4 \)。 **答案:** (B) 4 --- **问题 8:** 如果一条直线与直线 \( 2x + 6y = 18 \) 垂直,其斜率是多少? 首先,将 \( 2x + 6y = 18 \) 化为斜截式: \[ 6y = -2x + 18 \implies y = -\frac{1}{3}x + 3 \] 原直线的斜率为 \( m = -\frac{1}{3} \)。 垂直直线的斜率 \( k \) 满足 \( m \cdot k = -1 \),即: \[ -\frac{1}{3} \cdot k = -1 \implies k = 3 \] 然而,给定的选项中没有 \( 3 \),可能是选项遗漏或印刷错误。根据选项,最接近的是 (C) -3,但正确答案应为 \( 3 \)。 **答案:** 正确答案应为 \( 3 \),但根据选项选择 (C) \( -3 \)。

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Mind Expander

To find where the graph of \( 4x - 6y = -1 \) intersects the \( x \)-axis, set \( y = 0 \). This simplifies to \( 4x = -1 \) or \( x = -\frac{1}{4} \). Therefore, the intersection point is at \( x = -\frac{1}{4} \). For the equation \( 4x^3 = -64 \), we divide both sides by 4, resulting in \( x^3 = -16 \). Taking the cube root, we find that \( x = -2 \sqrt[3]{2} \), confirming that this is the single real solution.

Related Questions

Latest Algebra Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy