Answer
Here are the simplified answers for each problem:
1. **Problem 89:** \( 27\sqrt{2} \)
2. **Problem 90:** \( -51\sqrt{y} \)
3. **Problem 91:** \( 7^7 \)
4. **Problem 92:** \( 10^3 \)
5. **Problem 93:** \( 2x^2 + 8x + 11 \)
6. **Problem 94:** \( 12x^3 - 4x^2 + 44x \)
7. **Problem 95:** \( 2x^2 - 5x - 63 \)
8. **Problem 96:** \( -3x^4 + 8x^2 - 5 \)
If you need further assistance or more detailed explanations, please let me know!
Solution
Certainly! Let's simplify each of the given expressions step by step.
---
**Problem 89.** Simplify \( 7 \sqrt{72} - 5 \sqrt{18} \)
**Solution:**
1. **Factor the radicals to simplify:**
\[
\sqrt{72} = \sqrt{36 \times 2} = \sqrt{36} \times \sqrt{2} = 6\sqrt{2}
\]
\[
\sqrt{18} = \sqrt{9 \times 2} = \sqrt{9} \times \sqrt{2} = 3\sqrt{2}
\]
2. **Substitute back into the expression:**
\[
7 \times 6\sqrt{2} - 5 \times 3\sqrt{2} = 42\sqrt{2} - 15\sqrt{2}
\]
3. **Combine like terms:**
\[
(42 - 15)\sqrt{2} = 27\sqrt{2}
\]
**Answer:** \( 27\sqrt{2} \)
---
**Problem 90.** Simplify \( -10 \sqrt{25 y} - \sqrt{y} \)
**Solution:**
1. **Simplify the radicals:**
\[
\sqrt{25y} = \sqrt{25} \times \sqrt{y} = 5\sqrt{y}
\]
2. **Substitute back into the expression:**
\[
-10 \times 5\sqrt{y} - \sqrt{y} = -50\sqrt{y} - \sqrt{y}
\]
3. **Combine like terms:**
\[
(-50 - 1)\sqrt{y} = -51\sqrt{y}
\]
**Answer:** \( -51\sqrt{y} \)
---
**Problem 91.** Simplify \( 7^{3/2} \cdot 7^{11/2} \)
**Solution:**
1. **Use the property of exponents:** \( a^m \cdot a^n = a^{m+n} \)
\[
7^{3/2} \cdot 7^{11/2} = 7^{(3/2 + 11/2)} = 7^{14/2} = 7^{7}
\]
**Answer:** \( 7^7 \)
---
**Problem 92.** Simplify \( \frac{10^{17/4}}{10^{5/4}} \)
**Solution:**
1. **Use the property of exponents:** \( \frac{a^m}{a^n} = a^{m-n} \)
\[
\frac{10^{17/4}}{10^{5/4}} = 10^{(17/4 - 5/4)} = 10^{12/4} = 10^3
\]
**Answer:** \( 10^3 \)
---
**Problem 93.** Perform the operation and write the result in standard form: \( (9x - 4) + (2x^{2} - x + 15) \)
**Solution:**
1. **Remove parentheses:**
\[
9x - 4 + 2x^2 - x + 15
\]
2. **Combine like terms:**
- \( 2x^2 \) (only quadratic term)
- \( 9x - x = 8x \) (linear terms)
- \( -4 + 15 = 11 \) (constant terms)
3. **Arrange in standard form (descending powers of \( x \)):**
\[
2x^2 + 8x + 11
\]
**Answer:** \( 2x^2 + 8x + 11 \)
---
**Problem 94.** Perform the operation and write the result in standard form: \( 4x(11 - x + 3x^{2}) \)
**Solution:**
1. **Distribute \( 4x \) to each term inside the parentheses:**
\[
4x \times 11 + 4x \times (-x) + 4x \times 3x^2 = 44x - 4x^2 + 12x^3
\]
2. **Arrange in standard form (descending powers of \( x \)):**
\[
12x^3 - 4x^2 + 44x
\]
**Answer:** \( 12x^3 - 4x^2 + 44x \)
---
**Problem 95.** Perform the operation and write the result in standard form: \( (2x + 9)(x - 7) \)
**Solution:**
1. **Use the FOIL method (First, Outer, Inner, Last):**
\[
(2x)(x) + (2x)(-7) + (9)(x) + (9)(-7) = 2x^2 - 14x + 9x - 63
\]
2. **Combine like terms:**
\[
2x^2 - 5x - 63
\]
**Answer:** \( 2x^2 - 5x - 63 \)
---
**Problem 96.** Perform the operation and write the result in standard form: \( (3x^{2} - 5)(-x^{2} + 1) \)
**Solution:**
1. **Distribute each term in the first polynomial to each term in the second polynomial:**
\[
3x^2 \times (-x^2) + 3x^2 \times 1 + (-5) \times (-x^2) + (-5) \times 1
\]
\[
= -3x^4 + 3x^2 + 5x^2 - 5
\]
2. **Combine like terms:**
\[
-3x^4 + (3x^2 + 5x^2) - 5 = -3x^4 + 8x^2 - 5
\]
3. **Arrange in standard form (descending powers of \( x \)):**
\[
-3x^4 + 8x^2 - 5
\]
**Answer:** \( -3x^4 + 8x^2 - 5 \)
---
If you have any further questions or need additional explanations, feel free to ask!
Reviewed and approved by the UpStudy tutoring team
Explain
Simplify this solution