Question
upstudy study bank question image url

Para la función \( f(x)=\left\{\begin{array}{cc}2-x^{2}, & x \leq 2 \\ \frac{x}{2}-3, & 2
Ask by Zimmerman Clark. in Mexico
Jan 22,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

**a) \( f(2) = -2 \)** **b) \( f(4) = -1 \)**

Solution

Para la función definida por partes: \[ f(x) = \begin{cases} 2 - x^2, & \text{si } x \leq 2 \\ \frac{x}{2} - 3, & \text{si } 2 < x < 6 \\ 1, & \text{si } x \geq 6 \end{cases} \] **a) Calcular \( f(2) \):** Para \( x = 2 \), se utiliza la primera parte de la función ya que \( x \leq 2 \): \[ f(2) = 2 - (2)^2 = 2 - 4 = -2 \] **b) Calcular \( f(4) \):** Para \( x = 4 \), se utiliza la segunda parte de la función ya que \( 2 < x < 6 \): \[ f(4) = \frac{4}{2} - 3 = 2 - 3 = -1 \] **Resumen de resultados:** - **a)** \( f(2) = -2 \) - **b)** \( f(4) = -1 \)

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Bonus Knowledge

Para evaluar \( f(2) \), observamos que \( x = 2 \) se encuentra en la primera parte de la función \( f(x) \) donde \( x \leq 2 \). Sustituyendo \( x \) en la expresión, tenemos: \[ f(2) = 2 - 2^2 = 2 - 4 = -2 \] Para \( f(4) \), dado que \( 2 < 4 < 6 \), usamos la segunda porción de la función: \[ f(4) = \frac{4}{2} - 3 = 2 - 3 = -1 \] Por lo tanto, los valores son \( f(2) = -2 \) y \( f(4) = -1 \).

Related Questions

Latest Pre Calculus Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy